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There is a world-wide desire to improve the teaching of mathematics, yet while 
teachers strive to improve performance on tests, there is a growing realization that 
practicing procedures to be able to perform them fluently is not sufficient to develop 
powerful mathematical thinking. The brain works by focusing on important 
information and suppressing inessential detail. Sometimes the detail that worked 
before may later prove to be inappropriate and cause difficulties. There are thus two 
important issues to address: taking account of ideas that students have met before that 
affect their current learning, and helping them to focus on essential ideas that become 
the basis of more subtle thinking. I will use the notion of ‘compression of knowledge’ 
(Thurston, 1990) to refer to the shift in focus from a process occurring in time (such as 
addition) to a concept that can be thought about as a mental entity. This dual use of a 
symbol for process and concept is called a procept (Gray & Tall, 1994). 
It is my intention to build on a theoretical framework for the long-term development of 
mathematical thinking from new-born child to adult which requires powerful ideas to 
be compressed into thinkable concepts that apply in new situations. This suggests that 
teachers need to act as mentors to rationalize the use of ideas that students have met 
before and to encourage them to compress knowledge into powerful ideas that can be 
linked together in coherent ways. I will illustrate this by considering specific 
mathematical ideas that occur in school mathematics and refer to recent research 
findings from studies around the world. A curriculum based only on practicing 
procedures becomes increasingly complicated unless the student’s knowledge is 
compressed into thinkable concepts that make mathematical thinking not only 
powerful, but essentially more simple. 
LONG-TERM LEARNING OF MATHEMATICAL CONCEPTS 
How do we learn about mathematical concepts? How do we grow over the years to 
learn to think mathematically in sophisticated ways? Let us begin with two 
mathematical concepts: 
 (a) What is a ‘triangle’?  (b) What is ‘5’? 
A ‘triangle’ evokes descriptions like ‘a three-sided figure’, ‘a figure made of three 
straight lines’, or a picture like this  or this  or this . It is a physical or 
mental object that can be ‘seen’ or imagined in a thought experiment. A triangle is a 
prototype representing a whole category of figures, which can look very different, yet 
have the same essential properties as a three-sided polygon. To ‘see’ a figure as a 



triangle requires a focus of attention on the significant properties (the number of 
straight sides) ignoring inessential properties (e.g. lengths, angle size and orientation). 
The number ‘5’, on the other hand can be described as ‘the number after four’ or its 
properties might be evoked such as ‘5 and 5 make 10’ or pictured as five objects. It is 
related not to the particular objects counted, but to a procedure: the procedure of 
counting elements in a set using the number names ‘one, two, three, four, five’. 
Piaget distinguished two fundamental modes of abstraction of properties from physical 
objects: empirical abstraction through teasing out the properties of the object itself, 
and pseudo-empirical abstraction through focusing on the actions on the objects, for 
instance, counting the number of objects in a collection. Later he speaks of reflective 
abstraction focusing on operations on mental objects where the operation themselves 
become a focus of attention to form new concepts. 
Initially, therefore, we distinguish two ways of building a concept: 

•  The first is from the exploration of a particular object whose properties we 
focus on and use first as a description – ‘a triangle has three sides’ – and then 
as a definition – ‘a triangle is a figure consisting of three straight line 
segments joined end to end’. (The latter definition already assumes 
knowledge of meanings such as ‘figure’ and ‘straight line segment’.) 

• The second arises from a focus on a sequence of actions and on organizing the 
sequence of actions as a mathematical procedure such as counting, addition, 
subtraction, multiplication, evaluation of an algebraic expression, 
computation of a function, differentiation, integration, and so on, with the 
compression into corresponding thinkable concepts such as number, sum, 
difference, product, expression, function, derivative, integral. 

The first way gives a long-term cognitive development which, in geometry, has been 
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Figure 1: cognitive development of geometrical concepts 
(Tall, et al 2001, after van Hiele, 1986) 



formulated by van Hiele, building from perception of shapes, to description of their 
properties, practical constructions, definitions of figures that can be used for 
deductions, building to a coherent theory of Euclidean geometry (figure 1). 
In general, the building of concepts from perception of, and actions on, physical 
objects and the growing sophistication towards definitions, deductions and formal 
theory is called the conceptual-embodied world of mathematical development. 
The focus on actions, such as counting, has a quite different form of development, in 
which symbols are used to represent desired actions that are then also used for the 
outputs of those actions. This use of symbolism to shift from process to concept is 
termed a procept. Procepts occur widely in symbolic mathematics (Table 1). 
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Table 1: Symbols as process and concept 
This gives two different forms of mathematical development that interact at all levels: 

• the conceptual-embodied (based on perception of and reflection on 
properties of objects); 

• the proceptual-symbolic that grows out of the embodied world through 
action (such as counting) and symbolization into thinkable concepts such as 
number, developing symbols that function both as processes to do and 
concepts to think about (called procepts). 

These two developments focus increasingly on the properties of the concepts involved 
and a switch to focus on properties expressed in set-theoretic terms leads to 



• the axiomatic-formal (based on formal definitions and proof) which reverses 
the sequence of construction of meaning from definitions based on known 
concepts to formal concepts based on set-theoretic definitions. 

The whole system can be represented in a single diagram of overlapping categories of 
cognitive development (Figure 2). 

 
Figure 2: The cognitive growth of three mental worlds of mathematics 

We use two words to describe each world of mathematics because the component 
terms, such as ‘embodied’, ‘symbolic’ and ‘formal’ are used in different ways in the 
literature. For instance, Lakoff (1987) says that all thought is ‘embodied’, Peirce 
(1932) and Saussure (1916) use the term ‘symbolic’ in a wider sense than this, Hilbert 
(1900) and Piaget (Piaget & Inhelder, 1958) use the term ‘formal’ in different 
ways—Hilbert in terms of formal mathematical theory, Piaget in terms of the ‘formal’ 
operational stage when teenagers begin to think in logical ways about situations which 
are not physically present. 
Here the term ‘conceptual-embodied’ refers to the embodiment of abstract concepts as 
familiar images (as in ‘Mother Theresa is the embodiment of Christian charity’), 
‘proceptual-symbolic’ refers to the particular symbols that are dually processes (such 
as counting, or evaluation) and concepts (such as number and algebraic expression), 
‘axiomatic-formal’ refers to Hilbert’s notion of formal axiomatic systems. When these 
terms are used in a context where their meaning is clear, they will be shortened to 
embodied, symbolic and formal. 
At first the child coordinates perception and action, allowing it to use its perceptions 
and actions to build early conceptual-embodied conceptions of the world, and to 
increasing sophistication of geometric development through descriptions, 
constructions, definitions, deductions and on to Euclidean and non-Euclidean 
geometries. In parallel, a focus on actions and symbolism leads to the proceptual 



symbolism of counting, arithmetic, algebra, symbolic trigonometry, functions, 
symbolic calculus.  The two distinct worlds of conceptual embodiment and 
computations and manipulations with symbols as procepts have many links. 
By compressing the dual names conceptual-embodied, proceptual-symbolic and 
axiomatic-formal to embodied, symbolic and formal, (with the shorter terms carrying 
the meaning of the originals), it is possible to consider them in combination: 

 
Figure 3: Interrelationships between combinations of worlds of mathematics 

This gives a variety of routes to concepts as cognitive development grows. For instance, 
having built the natural numbers by compressing the procedures of counting to the 
concept of number, the concept of fraction may be introduced either by a new 
embodiment sharing sets or objects into a number of equal parts, or as new operations 
with number symbols; integers may be seen as pairs of numbers as credits (positive) 
and debts (negative) or as operations shifting the number line to the right or left. 
Is there a general principle that suggests that a particular route is likely to be more 
appropriate (say building symbolism from embodiment or giving embodiment to 
symbolism, or a balanced combination of the two)? 
Embodiment evidently gives human meaning, for instance, the following picture of 2 
rows of 3 objects can also be seen as 3 columns of 2 objects, so the total number of 
objects,   2¥ 3 is the same as   3¥ 2 . 

 
Figure 4: 2¥ 3 is the same as 3¥ 2 . 

In the embodied world, we categorize concepts together that satisfy certain properties. 
Figure 4 could just as easily represent any other rectangle with a whole number of rows 
and columns, say   4¥ 3  or   28759¥ 953246  or even m¥ n  where m and n are any 



whole numbers. Indeed, if we look at a picture with a larger number of rows and 
columns, human perception can no longer instantly see how many rows or columns 
there are, but is well able to see that the array has equal sized rows and columns, and so 
verify the commutative law perceptually. 
The embodied representation of the product as a rectangle of objects gives insight into 
the order irrelevance of multiplication of whole numbers, but more effort is needed to 
represent the commutative law for fractions and for mixed positive and negative 
numbers. On the other hand, if one needed to calculate 28759¥ 953246  and 
  953246¥ 28759  to check that they are equal, then the complication of the arithmetic 
might cause young learners concern. This suggests a principle that embodiment can 
give a real human insight to the simpler forms of mathematical structure but that more 
subtle forms may require a different approach. 
In an algebraic approach, the commutative law a¥ b = b¥ a  is assumed as a 
fundamental law based on experiences in arithmetic. In the formal world in various 
axiomatic systems, it is an axiom. 

Algebraic identities such as    a
2 - b2 = (a - b)(a + b)  can be given an embodied 

meaning as in the following picture (figure 5). 

 
Figure 5: a2 - b2 = (a - b)(a + b)  

The problem here is that the embodied representation is more complicated when b > a  
or the values a and b may be positive or negative. It requires meaning being given to 

 

Figure 6: a2 - b2 = (a - b)(a + b)  for a < 0, b > 0 ,    b < | a |  



negative lengths (by reversal) and negative areas (by turning over). Can you ‘see’ this 
in figure 6? 
Matters become more complicated with the formula 

     a
3 - b3 = (a - b)(a2 + ab + b2 )  

Can you ‘see’ it in three dimensions as in figure 7? It is easier to do with physical 
manipulatives for positive a and b. 

 
Figure 7: The difference between two cubes a3 - b3  

The visualization is more complicated for positive and negative values of a and b, and 
as we move to    a4 - b4  in four dimensions, we are no longer in familiar territory. The 
case of   an - bn  in general is impossible to visualize for ordinary mortals, certainly for 
values of n greater than 3. 
Meanwhile, the meaning via symbolic manipulation is routine. The case    n = 4 even 
consists of two applications of the case n = 2: 

  
   

a4 - b4 = (a2 - b2 )(a2 + b2 )
= (a - b)(a + b)(a2 + b2 )

 

We see therefore that there is a genuine need to switch from embodiment to symbolism 
as the mathematics becomes more complex. 
COMPRESSION OF KNOWLEDGE FROM PROCEDURE TO THINKABLE 
CONCEPT 
Mathematics requires more than the ability to carry out procedures to do mathematics, 
it requires the construction of thinkable concepts to manipulate in the mind and as 
symbols on paper. 

The symbols    a2 - b2  and    (a - b)(a + b)  represent quite different sequences of 
evaluation. The first squares the values of a and of b and then subtracts the latter square 
from the former. The second subtracts b from a, then adds a and b and then multiplies 
them together. So the expressions a2 - b2  and (a - b)(a + b)  represent different 
procedures of evaluation but always give the same result. 



The functions f (x) = x2 - 4  and g(x) = (x - 2)(x + 2)  are likewise different 
procedures of evaluation, but are considered as giving the same function, because for 
given input, they always give the same output. 
Various theories of process-object encapsulation  (eg Dubinsky, 1991; Sfard, 1991, 
Gray & Tall, 1994) suggest that the conceptions begin as step-by-step actions (or 
procedures) and then are re-conceptualised as overall processes focusing on the 
relationships between input and output. On closer inspection, there is a whole spectrum 
of compression (Figure 8): 

• pre-procedure (before the full step-by-step procedure is constructed); 
• a single step-by-step procedure, 
• more than one procedure, giving the possibility of selecting the most efficient 

in a given context; 
• seeing the process as a whole, 
• conceiving the process as a thinkable concept (a procept) that may be 

manipulated.  
The learning of procedures is part of mathematics, as is the practice for increasing 
speed, and the development of shorter procedures for increasing efficiency. But 

 

Figure 8: Spectrum of outcomes from increasing compression of symbolism 
(expanded from Gray, Pitta, Pinto & Tall, 1999, p.121). 



without compression to thinkable concepts, the building of connections between ideas 
and the transition to the next level of development is likely to prove more difficult. 
Procedures occur in time and while it may be easy to practice them until they become 
fluent, it is less easy to think about them as thinkable concepts. For instance, a child 
whose conception of arithmetic is mainly in terms of counting procedures without a 
flexible understanding of known facts and the ability to derive new number facts from 
old is likely to find the transition to fractions, negatives and later to algebra, 
increasingly challenging. Students may be able to solve routine problems and pass 
examinations but they may then be compromised in their learning at the next stage as 
they lack the simple thinkable concepts to put together to make sense of the new 
situations. 
It may happen that two students correctly solve the same problem, but one may have a 
very different conception of the solution. As an example, consider the following: 

Circle the expressions that give the same result. 
Write another expression that is the same: 
     (x + 3)(x - 2) , x2 + 5x - 6 , x2 + x - 6 . 

Student ‘John’ correctly circled the first and the third, (x + 3)(x - 2) ,    x
2 + x - 6 . He 

then correctly wrote the expression (x - 2)(x + 3) . On the surface this is just the 
original expression with the terms in brackets reversed. But when asked what he did, 
John obtained the final expression (x - 2)(x + 3)  by factorising x2 + x - 6  and he had 
not realised that the result was the same as the first expression. 
Does this really matter? On the surface, John gets the routine questions correct. His 
problem is, however, that he lacks flexibility to move on and he had increasing 
difficulties coping with the procedures of calculus, which increasingly he tried to 
commit to memory in a way that proved to be fallible and began to fall apart. 
THINKABLE CONCEPTS AND MET-BEFORES 
Long-term learning becomes increasingly sophisticated. The complex 
multi-processing brain needs to focus on essentials and suppress irrelevant detail to be 
able to make decisions (Crick, 1994). Language enables us to focus on any 
phenomenon of interest, be it an object, an action, a property, an emotion, or whatever, 
to be able to name it and talk about it to make its meaning more precise. The notion of 
‘procept’ is a typical example. Eddie Gray and I (Gray & Tall, 1994) realised that the 
same symbol such as 3+2 was being used by some children as a cue to carry out a 
counting procedure, while for others it was a thinkable concept, the sum ‘5’. By 
naming this phenomenon as a ‘procept’, it gave the facility to talk about it, to realise 
that procepts occurred throughout the symbolism of arithmetic, algebra, trigonometry, 
calculus, functions, transformations, and so on. It allowed us to see that the same 
symbol was interpreted very differently by different individuals and caused greater 
cognitive complications for some than for others who had compressed the symbol into 
a thinkable concept. It then allowed the idea to be refined and analysed, seeing 



‘operational’ procepts in arithmetic, always producing a result, ‘potential’ procepts in 
algebra as expressions such as 3x+2 can only be evaluated when x is known, 
‘potentially infinite procepts’ in the form of limits, and so on. 
The formation of thinkable concepts is essential in the increasing sophistication of 
long-term development. The learner builds new conceptions on experiences that they 
have met before. Technically, I define a met-before (Tall, 2004) to be a current 
conceptual structure in the mind that is linked to a previous experience. This allows us 
to reflect on what children are doing and to talk to each child about some previous 
experiences that are helpful in a new context and others that may now be causing them 
difficulties. For example, arithmetic always produces ‘answers’, but this met-before 
can cause great difficulties when algebraic expressions do not give ‘answers’. On the 
other hand, the embodied shifting of objects around is a convenient met-before that 
may enable the learner to move the symbols around in an expression    3x + 4y + 2x  to 
‘move like terms together’ and combine 3x and 2x into 5x to transform the expression 
into    5x + 2y . Such a shifting of terms may work with expressions, but it causes 
difficulty with equations such as    3x + 4 = 2x + 5  where moving the 2x next to the 3x 
requires not only ‘change sides’ but also ‘change signs’. 
Of course we would wish to teach algebra with meaning, and there are various ways 
that we might embody an equation to give meaning, for instance by considering it as a 
‘balance’, so that    3x + 4 = 2x + 5  is a balance with three ‘x’s and 4 on one sided and 
two ‘x’s and 5 on the other. Removing two ‘x’s from both sides leaves the sides in 
balance and gives    x + 4 = 5 , then removing 4 from each side leaves the solution x = 1. 
As we saw earlier, however, an embodiment that works in a simple case may not work 
in a more sophisticated context; this embodiment becomes more complicated if there 
are negative terms or negative values involved. (Vlassis, 2002). The learner must now 
use the technique when the embodiment may be meaningless. 
The alternative is to make meaning not in the embodiment, but in the symbolism. Here 
the expression    3x + 4 needs to be given meaning as an expression will depend on x 
and which can be manipulated as a generalised arithmetic operation: a difficult 
conception for many learners, especially those who see an arithmetic expression 3+2 as 
a procedure to be carried out, rather than a concept that can be manipulated in itself. 
Such an analysis would imply that students who lack proceptual flexibility with 
arithmetic will find algebra difficult to comprehend and be forced into procedural 
learning of the operations required to manipulate the symbols without meaning. 
LONG-TERM LEARNING 

This discussion leads us to a long-term view of learning, building on the genetic 
capabilities of the learner and the successive learning experiences over a life-time: 

• The child is born with generic capabilities set-before in the genetic structure; 
• Current cognitive development builds on experiences that were met-before; 



• This occurs through long-term potentiation of neuronal connections which 
strengthens successful links and suppresses others; 

• Actions are coordinated as (procedural) action-schemas; 
• Ideas are compressed into thinkable concepts using language & symbolism; 
• Thinkable concepts are built into wider (conceptual) knowledge schemas; 
• Mathematical thinking builds cognitively through embodiment, symbolism 

and, later, formal proof, each developing in sophistication over time; 
• Success in mathematical thinking depends on the effect of met-befores, the 

compression to rich thinkable concepts, and the building of successive levels 
of sophistication that is both powerful and simple. 

In particular, it suggests that procedures that are not compressed into thinkable 
concepts may give short-term success in passing tests, but if those procedures are not 
given a suitable meaning as thinkable concepts (in this case, procepts), then they may 
make future learning increasingly difficult. 
Various studies carried out by doctoral students at Warwick University in countries 
around the world reveal a widespread goal of ‘raising standards’ in mathematics 
learning, which are tested by tests that could promote conceptual long-term learning, 
but in practice, often produce short-term procedural learning that is may be less 
successful in developing long-term flexibility in understanding and solving 
non-routine problems. 
Procedural conceptions of fraction 
A study by Md Ali (2006) of the teaching of fraction in Malaysia focused on the 
methods used to raise the standards of all children learning mathematics by a 
curriculum that is intended to develop conceptual learning. Children are taught 
fractions in a caring and helpful way that includes the flexibility of seeing that a 
product, such as ‘two-fifths of twenty-five’ can be performed in two distinct ways: the 
first works out a fifth of twenty five, which is five, then multiplies by two, to get ten. 
The second multiplies two times twenty-five to get fifty and divides by five, also to get 
ten. However, the process is done by getting the children to recite the procedure, with 
the teacher saying successive parts of it and inviting the children to fill in the required 
words. For instance, the teacher might say, ‘How do we work out two-fifths of 
twenty-five?’ and draw three circles on the board one above the other for numerator 
and denominator of the fraction, the other for the whole number. ‘What do we put in 
the top circle? The nu…’, to which the class gleefully says ‘the numerator!’. ‘What do 
we put in the bottom circle? The de…’, the class replies ‘denominator!’. ‘Of means 
mul…’, ‘multiply’, and so the lesson continues, building up the ritual of the procedure 
of multiplication by a fraction. 
The children’s achievement in fractions tests is improved, but it is achieved by 
focusing upon persistent routine exercises. While this focuses on increasing efficiency 
of calculation using two different methods, it does not focus on the flexibility of 
fraction as a thinkable concept. The general consensus of teachers interviewed was that 



they faced a dilemma: on the one hand the curriculum recommended conceptual 
teaching and learning but on the other they had to succumb to the demand to achieve 
the school target in the examination. The teachers focused extensively on mastery of 
techniques through their lesson structure, their emphasis on the content and the way in 
which they presented it at the expense of the children’s understanding of the fraction 
concept and the ability to perform creatively to solve even mildly different problems.  
‘Magic’ embodiments in algebra 
Working with a group of committed teachers in Brazil, Rosana Nogueira de Lima (de 
Lima & Tall, 2006) found that the teachers’ concern to help students pass their algebra 
examinations led to focusing on the required techniques. Their experience of algebra 
included the manipulation of expressions such as reordering 3a+3b+2a to give 
3a+2a+3b and then to simplify to 5a+3b. This involves ‘moving’ the 2a ‘next’ to the 
3a and then adding them together to get 5a. In our mind’s eye, we might sense this as 
‘picking up’ the ‘2a’ and moving it over the ‘3b’ to get ‘like terms’ together. 
The students were taught to solve linear equations by using the principle of ‘doing the 
same thing to both sides, but many of them focused not on the general principle, but on 
the specific actions required to get the solution. The solution of   3x + 2 = 8  is then 
achieved by moving the numbers to the same side. Unlike the met-before of moving 
like terms together in an expression, shifting the 2 to the other side requires the ‘magic’ 
of ‘change sign’ to get 3x = 8 − 2  and simplifying to get 3x = 6 . This may be solved by 
‘moving the 3 over the other side’, this time ‘putting it underneath’ to get 

  . 
Such an activity seems to give a kind of procedural embodiment, remembering a 
sequence of actions to perform, rather than a conceptual embodiment, which involves 
giving coherent meaning to the underlying concepts. It works for a few able students 
who are able to carry out the procedure accurately, but without meaning, the procedure 
is fragile and many students make mistakes, such as changing   3x = 6  with the 
additional magic of ‘changing signs’ to get 

 . 
Once such an error occurs and is marked as wrong by the teacher, the student tries to 
‘correct’ mistakes, which can produce a new range of mixtures of errors. 
In solving quadratics, the situation became worse as the teachers, knowing the 
difficulties with linear equations, focused on teaching the formula, which they know 
will solve all quadratic equations. However, in order to be able to use the formula, it 
may be necessary to first manipulate the symbols in the equation and here problems 
arose when the students were asked to show that the equation (x − 2)(x − 3) = 0  had 
roots 2, 3. Many could not begin and, of those that could, none saw that on substituting 



the values the equation was satisfied; instead they attempted to multiply out the 
brackets and solve the equation using the formula. Few succeeded. 
Complications in the function concept 
As we move through into the secondary curriculum we come to concepts like the 
notion of function, which the NCTM standards see as being an essential underpinning 
of a wide range of mathematics. In some countries, such as Turkey, the function 
concept is taught from its set-theoretic definition and seen as a fundamental 
foundational idea. It is quite simple. You have two sets A and B and for each element x 
in A, there is precisely one corresponding element y in B which is called f (x)  (eff of 
eks). That’s it! 
However, this is used in the curriculum to weave a huge web of knowledge: linear 
functions, quadratic functions, trigonometric functions, exponentials and logarithms, 
formulae, graphs, sets of ordered pairs, set diagrams, and so on. How does one help the 
student make sense of this complicated mass of ideas? 
If the purpose is to score marks on the examination, one strategy is evidently to give 
them all the details of all the techniques they require to pass the examination. But 
perhaps there is another way, more suitable to enable the student to focus on relevant 
detail and to build thinkable concepts that naturally link one to another. 
Bayazit (2006) reports a study of the teaching of two teachers with very different 
approaches. 
Teacher Ahmet saw his duty to mentor the students and help them make sense of the 
notion of function. So whenever he studied functions, he emphasised the simple 
property that a function f : A → B  mapped each element of the domain A into the 
domain B. For example, in considering when a graph could be a function, he looked at 
the definition and related it to the fact that each x corresponded to only one y, and 
related this to the ‘vertical line’ test. When he considered the constant function, he 
went back to the definition and revealed the constant function f (x) = c  as the simplest 
of functions which mapped every value of x in A onto the single element c in B. 
Nothing could be simpler! Likewise, when he studied inverse functions, such as the 
square root, the inverse trigonometric functions and the relationship between logarithm 
and exponential, he patiently referred everything back to the definition of a function 
and encouraged his students to focus on the essential simplicity of the ideas. With 
piece-wise functions, which were new to the students, he again went back to the 
definition and confirmed how these too satisfied the simple requirement that for every 
x there was a unique. 
The other teacher, Burak, was well aware of his students’ potential difficulties and 
misconception with the functions, and was also aware of the sources of such obstacles. 
However, he focused on what was necessary for the students to pass the exam. He 
taught the ‘vertical line test’ as a specific test for functions, practising examples to get 
it right. He considered that students rejected the constant function because of their 



inability to conceive an ‘all-to-one’ transformation as a possible interpretation of the 
function definition, explicitly addressing the absence of x in the formula as a particular 
source of misconception. He interpreted the students’ difficulties with the inverse 
function as an indicator of their inability to move back and forth between the elements 
of domain and co-domain without losing sight of the ‘one-to-one and onto’ condition. 
He considered that the students had problems with visible discontinuities of the graph 
of piecewise-defined functions, predicting that the student would join the points by 
broken-lines or curves.  
However, Burak made no effort to eliminate these obstacles during his classroom 
teaching. His range of knowledge of his students is a complicated collection of 
different problems. So he gave the students all the detail they needed to answer the 
examination questions. He constrained his teaching of inverse function to working out 
the formula, so that to find the inverse of y = 2x + 3, one would express x in terms of y 

by subtracting 3 from both sides and dividing by 2 to get x =
y − 3

2
 then interchange x 

and y to get the inverse function as y =
x − 3

2
. He explained that a constant function 

does not involve x and that its graph is a horizontal line parallel to the x axis, When 
teaching the piecewise function, he avoided the difficulties and did not give any 
illustration to encourage his students to reflect on what happened when the graph of the 
function was made up of disjoint parts or isolated points. 
He would often indicate to students that an examination or test required a particular 
way of learning: 

If you want to succeed in those exams you have to learn how to cope. 
Do not forget simplification. It is crucial, especially [in] a multiple-choice test. 

It would appear that his desire for success over-rode his deeper conceptions of thinking 
so that he provide an action-oriented teaching practice in which his students’ 
difficulties and misconceptions were peripheral to the rules and procedures that would 
lead to success in the types of problem asked in examinations. 
REFLECTIONS 
Looking at the total picture of long-term learning, what emerges is the absolute 
necessity of the teacher helping the student to construct thinkable concepts that not 
only enable students to solve current problems, but also to move on to greater 
sophistication. In a given situation, the learning of efficient procedures to do 
mathematics is an important part of learning, but in the long-term, it is essential to 
compress knowledge into thinkable concepts that will work in more sophisticated ways. 
This can be done by building on embodied experiences that can give insightful 
meanings suitable for initial learning but may include met-befores that can hinder 
future sophistication. Here it is essential to focus on the development of flexible 



thinking with the symbolism that compresses processes that can be used to solve 
mathematical problems into procepts that can be used to think about mathematics. 
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