Fraction for Teachers

Knowing What before Planning How to Teach

Masami Isoda, PhD/Prof. Director of CRICED, University of Tsukuba, Japan

First Edition for the SMASE-INSET project by JICA, Japan and ME, Nigeria Electronically Published from CRICED, University of Tsukuba, May 8, 2013

Revised September 21, 2019

Preface

Education is the work to prepare for the future. Developing children who learn mathematics by and for themselves is one of the major issues on mathematics education reforms in the world (See such as Isoda \& Katagiri, 2012). After the comparative study of mathematics classroom such as TIMSS video study in 90s, Japanese lesson study is the world-shared methodology as for the tools for professional development because the study indirectly demonstrated the quality of Japanese mathematics teaching and it is established by the lesson study. However, people often misunderstand the lesson study as for the talking about the class rather than studying subject matter. They enjoy the classroom observation likely listening to the music or watching the theatre. However, through listening to the music, and even if we enjoy talking about actors, we cannot prepare the good player ourselves. In Japanese lesson study, most efforts are done for the preparation of the class. The misunderstanding originated due to the limitation of the content guidebook to refer in English. On this reason, I have developed several resources which show the theory for the purpose to improve mathematics education with researches in the world.

For the workshop of SMASE-INSET project under Japan International Cooperation Agency (JICA), Japan and Federal Ministry of Education (FME), Nigeria, this booklet includes the essential theory for enabling teachers to plan the class for developing children who learn mathematics by and for themselves. It focused on the innovation of elementary school mathematics based on the content which is well written in the textbooks in each country and known by teachers. The workshop done in Nigeria was based on the author's experience in Central and South America, South East Asia and Pacific as well as in Japan.

May 7, 2013
Masami Isoda, PhD
CRICED, University of Tsukuba, Japan
Copyright for First edition:

Author allows anyone (including SMASE-INSET) to use this booklet when he/she acknowledges it in his/her reference completely: Masami Isoda (2013). Fraction for Teachers: Knowing What before Planning How to Teach. Tokyo: CRICED, University of Tsukuba which downloaded from http://mathinfo.criced.tsukuba.ac.jp/museum/dbook site/

Copyright for Second edition:

Second edition which divided the Chapter 6 to Chapter 6 and 7 and re-brushed up English was prepared for SEAMEO School Network. Author allows anyone to use this booklet when he/she acknowledges it in his/her reference completely: Masami Isoda (2013). Fraction for Teachers: Knowing What before Planning How to Teach. (2nd edition) Tokyo: CRICED, University of Tsukuba which downloaded from https://www.criced.tsukuba.ac.jp/online-contents.html

Pictures of the English Edition of Japanese-Mathematics Textbook are extracted from 'Study with Your Friends MATHEMATICS for Elementary School (Gakko-Tosho; 2005)'. When user extracts the pictures from the booklet, he/she needs the permission from Gakko-Tosho: Katsuaki Serizawa (e-mail: katsuaki.serizawa@gakuto.co.jp), GAKKO TOSHO CO., LTD. 3-10-36 Higashi-jujo Kita, Tokyo, 114-0001, Japan. https://support.gakuto.co.jp/mathematics-textbook/

Acknowledgment

Author Masami Isoda, PhD, acknowledges Gakko-Tosho which allowed the author to use the textbooks 'Study with Your Friends MATHEMATICS for Elementary School (2005) for this booklet. The content of this booklet was adopted for the workshop in SMASEINSET by the author. Author acknowledges the following colleagues who contributed to the workshop in Abuja, Nigeria in May, 2013.

National Trainers

Olasinde Kudrat, Hadizat Garba, Zainab Muhammad Shuaibu, Abubakar
Ibrahim
State Trainers
Ahmed Eneji, Mohammed Kabir Falalu,Monday Kurah

Japanese Staffs of JICA SMASE-INSET

Kazuhiro Okamoto, Tsuyoshi Ito, Hiroko Miura, Masako Tsuzuki, Hiromi Miyao
JICA Nigeria
Tatsuo Seki
Additionally, the author deeply acknowledges a number of colleagues who has been working with or supporting the author to develop the materials in the world.

Maitree Inprasitha (Thailand), Peter Gould (Australia), Catherine Lewis (USA), Raimundo Olfos (Chile), Tenoch Cediro (Mexico), Ui Hock Cheah (Malaysia), Suhaidah Tahir (Malaysia), Kaye Stacey (Australia), Max Stephens (Australia), Abraham Arcavi (Israel), Fadja (Indonesia) and all colleagues of APEC Lesson Study project: http://www.criced.tsukuba.ac.jp/math/apec/

Akinori Ito (JICA, PNG project)

About the Author

Affiliation and Address:
CRICED/Graduate School of Education, University of Tsukuba, 305-8572, Japan.
Website:
http://math-info.criced.tsukuba.ac.jp/
Title:
PhD (Education), Waseda University;
Honorary PhD (Mathematics Education), Khon Kaen University, Thailand;
Associate Professor, University of Tsukuba (1998-).
Education:
Master Program of Education, University of Tsukuba (1984).
Academic Membership:
Advisory Board Member, History and Pedagogy of Mathematics (2002-);
Project Overseer (Director), APEC Lesson Study Project in Mathematics (2006-);
Council Member, World Association of Lesson Study (2011-);
Chief Editor, Journal of Japan Society of Mathematical Education (2010-).
Awarded by:
Minister of Education (MEXT), Japan, as for the Best Educational Software in the Year 2005;

President of the Japan Publishers Association as for the Most Beautiful Book of the Year 2010 in the area of natural science;

Honorary PhD (Mathematics Education) by Khon Kaen University, Thailand as for his contribution to Khon Kaen University and Thailand, 2011.

Book for Acquisitions Program of Chilean Authors, Selected by National Committee of Culture and Art, Government of Chile. 2012.

President of the University of Tsukuba, as for the Best Faculty Member of the Year 2012. 2013.

Further CV and Publications:
Japanese Full
http://www.trios.tsukuba.ac.jp/Profiles/0006/0000997/profile.html
English Part
http://www.trios.tsukuba.ac.jp/Profiles/0006/0000997/prof_e.html

Table of Content

Preface 2
About the Author 4
Table of Content 5
Chapter 1: What is fraction? 7
Questions for professional development 1 10
Major Reference and Further readings 1 11
Chapter 2: Dividing Fraction and Quantity Fraction 12
Questions for professional development 2 15
Dividing Fraction 16
Exercise: 17
Operational (measuring) Fraction 17
Euclidian Algorithm 18
Exercise: 18
Quantity Fraction 18
Unit Fraction for measuring unit 19
Major Reference and Further Readings 2 19
Chapter 3: Addition of Fraction with Different Denominators 20
Exercise 20
A Sample of Arguments: 21
Questions for professional development 3 24
Major Reference and Further readings 3 25
Chapter 4: When does Fraction become Number? 26
Equivalent Fraction 26
Number Line 26
Fraction is Expression: Fraction as Quotient 27
Exercise. Let's read and answer 28
Questions for professional development 4 30
Major Reference and Further readings 4 31
Chapter 5. Fraction in relation to ratio and proportion 32
Questions for professional development 5 33
Fraction as Ratio 38
Exercise 38
Rule of Three: two by two matrix table 39
Tape and Number-Line diagram: Proportional number line 39
Exercise 40
Multiplication as for the Origin of Proportionality 40
How to draw the proportional number line 42
Major Reference and Further readings 5 43
Chapter 6. Multiplication and Division of Fraction (1) 44
Number line 44
Multiplication 45
How to find the expression from the situated problem 46
Exercise 47
Fraction \times Whole Number 47
Exercise 48
Fraction \times Fraction 48
Area Diagram. 48
Exercise 49
Major Reference and Further Readings 6 51
Chapter 7. Multiplication and Division of Fraction (2) 52
Rules of Multiplication and Division 52
Exercise: 52
Exercise: Fraction divided by Fractions 54
Major Reference and Further Readings 7 55
Further Readings 56

Chapter 5. Fraction in relation to ratio and proportion

In relation to the fraction as quotient, fraction is used for representing the ratio ' $:$ ' as (Ratio) $=($ Comparing Quantity) \div (Base Quantity for the Unit of the Ratio). There are several contexts to use ratio. Japanese approach consistently uses Tape diagrams, Number lines, Area diagrams and Tables, as representations for thinking.

Firstly, ratio (value of ratio) is the result of division. There are two contexts in relation to the meaning of division. The following two types of dividing activity: partitive division and quotative division (Chapter 2, Q11).

Partitive Division
12 candies are divided by 4 children, equally. How many candies one child can receive?
Ans. 3 candies for one child

> Quotative Division
> 12 candies are distributed by 4 candies for one child. How many children can receive candies?

> Ans. 3 persons

When we see the underlined words in both tasks, the partitive division treats different quantity/denomination such as candies and children, and quotative division treats the same quantity/denomination.

On terminology, rate is the ratio for different quantities. Division by the different quantity (partitive division) is the rate which is unknown quantity represented by the quantity per the different quantity such as $($ speed $(\mathrm{km} / \mathrm{h}))=($ distance $(\mathrm{km})) \div($ duration (hour)). One person runs $10 \mathrm{~km} / \mathrm{h}$ and another person runs $8 \mathrm{~km} / \mathrm{h}$. Even if two people run together, they do not run at $18 \mathrm{~km} / \mathrm{h}$. The quantity such as speed which cannot be added is called connotative quantity. It is usually given specific name such as speed.

Division by the same quantity (quotative division) establishes the ratio of the same quantity which produces the rate to show coefficient/multiple (how many times). If we carefully read the task for quotative division situation, it is not exactly the same quantity/denomination. Because, contextually, it can be represented by (number of children $)=(12$ (candies) $) \div(4$ (candies for one child $)$). On the quantity expression, it is $\frac{(\text { Candies })}{\left(\frac{\text { Candies }}{\text { achild }}\right)}=($ Children $)$. Both numbers 12 and 4 are number of candies for students. Thus, it is unnecessary to see them as different quantities.

There are countries that use the ratio symbol ' : ' as the for division symbol ' - '. It means that $a: b$ is the same as $a \div b$ and $\frac{a}{b}$. To distinguish the ratio of different quantities (usually with special name as for new quantity) and the ratio of the same quantity (just in case, $\mathrm{a}<\mathrm{b}$ and it is the narrow usage of WARIAI in Japanese) is reasonable. On the context of ratio $a: b, \frac{a}{b}$ is called value of ratio.

Questions for professional development 5

The following tasks show the various context of ratio. Let's answer the following questions.

Q22.

1) Solve the following task. Provide the answer using percentage.
2) Explain the feature of the task using the following terms: Partitive division, Different Quantities.

3 Some students checked the number of passengers on airlines one day. Which plane is more crowded?

Number of Passengers and Seats

	Small plane	Large plane
Number of passengers	117	442
Number of seats	130	520

A number that is expressed by the quantity being compared when the basic quantity is made 1 , like a shooting record or crowding, is called "a ratio."
Ratio $=$ Quantity being compared \div Basic quantity
(Gakko Tosho, Grade 5, vol.2, pp57-58, 2005; pp85-86, 2011)

Q23.

1) Solve the following tasks and explain the base quantity for each task.
2) Explain the role of tape and number-line diagram.
3) Explain the situation using the quotative division and the same quantity.
4) $16 \div 20=\frac{16}{20}=\frac{4}{5}$. Can we explain the task by the part-whole relationship?

The Ratio of 2 Quantities

We can express the proportion between 2 quantities even if one of them is not a part of the other.

4 There are 16 boys and 20 girls in Keiko's class. Let's find the ratio of the number of boys to the number of girls.

5 In Keiko's class in 4 , let's find the ratio of the number of girls to the number of boys.

Compared quantity Basic quantity Ratio

men Exernics.
(Gakko Tosho, Grade 5, vol.2, pp59, 2005; pp87, 2011)

Q24.

1) Solve the task using ratio.
2) If we consider the case of 6 mats for comparison, we do not need to use the idea of ratio.

2 Measurement per Unit

1 Some students are standing on mats.

Which one, (a), (b) or (c), is the most crowded?
(a) 2 mats, 12 students
(b) 3 mats, 12 students
(C) 3 mats, 15 students
(a) 2 mats, 12 students

(b) 3 mats, 12 students

(Gakko Tosho, Grade 6, vol.1, p74; Grade 5, vol.1, p19)

Q25.

1) Let's solve the following tasks.
2) If you change the ratio to fraction, is it representing the part-whole relationship?

3 A lactic acid drink for one student is made of 120 ml water and 30 ml of a concentrated lactic acid.

We want to make enough for 3 students.
How many ml of water and concentrated lactic acid do we need?

4 We used 200 g of pancake mix and 150 g of milk to make 4 pancakes. If we want to make 2 pancakes, how many g of pancake mix and water do we need?

-for 2 pancakes

To make pancakes with
(Grade 6, vol2,p35,2005; p11, 2011)

Q26. Compare the following task with Q23. Can we see the fraction by the part-whole relationship?

Ratio Represented by a Fraction

2 Yukiko and her friends played a game by comparing how far they could throw a softball. The average was 18 m .

(1) Yukiko's record is 24 m . How many times is her record to the average? Show it by a fraction.

Ratio is sometimes expressed as fractions.
(2) Hiroko's record was 15 m . Her record is how many times the average?

(Gakko Tosyo,Grade6, vol2,p27,2005; Grade 6, vol.1,p53,2011)

Fraction as Ratio

On the context of ratio $a: b, \frac{a}{b}$ is called value of ratio. However, in some countries, fraction is usually explained on the context of the part-whole relationship. Contextually, it is correct, however, in the previous chapter, the author already explained that this narrow understanding of fraction has developed huge misconceptions of fraction itself. Fraction $\frac{\mathrm{n}}{\mathrm{m}}(\mathrm{m} \neq 0)$ in mathematics is a representation of rational numbers. It is the value of ratio $n: m$ which cannot be defined by the part-whole relationship. For understanding fraction, we should know the various meanings and must use suitable representations for every meaning.

Indeed, on the context of usage on the ratio, we cannot generally explain the fraction by the part-whole relationship. For example, speed is the quantity such as km per hour. Distance is not the part of time duration. The ratio of boy and girl is $2: 3$. In fraction, it is $\frac{2}{3}$. It means that if there are three girls, the boys must be two: $\frac{2}{3} \times 3=2$. Here, the boy is not the part of the girl. The boy is the part of the whole human, not the girl. The ratio of boy and human $2: 5$ can be seen as a part-whole relationship.

Thus, through the learning sequence, children relearn all meanings or contexts of using fraction, and at the end of it. They can be re-presented/integrated by the idea of ratio.

Fraction as ratio is usually used in the context of multiplication. The ratio of boys and girls is $2: 3$. The value of ratio is $\frac{2}{3} \cdot \frac{2}{3}$ is used for knowing the number of boys when the number of the girls is given: (the number of boys) $=\frac{2}{3} x$ (the number of girls). This is the proportion. On the equation to represent the proportion, the ratio is used for the coefficient. Until students well understand the proportionality ${ }^{3}$, we cannot say that the dividing fraction is the fraction as ratio.

Let's think about the various representation of proportionality. Firstly, proportionality appeared from each row of the multiplication table. However, on the multiplication table, children do not clearly think co-variable. It is difficult to distinguish the covariable with the term of multiples from the co-variable with the term of difference/increase at the introduction of rows because they are developing each row by adding multiplier based on accumulation.

Exercise

If there is proportionality between the length of ribbon and its price, please fill in the ?.

Price (Cost)	80	$?$
Length of ribbon (m)	1	2.4

[^0]
Rule of Three: two by two matrix table

In the situation of the proportionality, if three numbers are given on the table, we can get the one in the remaining part of the table. Historically, this rule is called 'Rule of Three' which was the ancient's method for ratio and proportional reasoning. The idea itself is well known at the age of
 Egyptians (BC17C). It has existed before the invention of expressions and equations for algebra. Historically, the Rule of Three in 17th century is represented the arrangement of table with only four numbers.

In school mathematics, the rule of three was taught just as a rule in relation to ratio and proportion. Later, the rule of three is represented by the three different expressions or formula, however we should know that the original rule of three itself was used without current expressions. It was used to be the number-arrangement on the paper to consider the ratio and proportion. Currently, we distinguish it by different formula of multiplication and division depending on the arithmetic situations. However, rule of three is based on the ratio and we do not need to care to distinguish the multiplication or division expressions depending on the situations. If we array numbers and consider the relationship with idea of ratio and proportion by using multiplication and division, it is enough. On this meaning, the person who explains the rule of three as the three different types of formulas is not using the rule of three but thinking based on current arithmetic representation oriented to algebra which should be represented by the different expressions. Likely using rule of three in ancient era, table and arrow representation for representing ratio must be easier for everyone and closer to the ancients approach because rule of three does not need to distinguish the situations by the three different types of expressions. On the algebraic representation of situation, if given quantities on ratio x to y, the value of x / y is ratio and y is the base. The formulas, $\mathrm{x} / \mathrm{y}=\mathrm{a}, \mathrm{x}=\mathrm{ya}$ and $\mathrm{y}=\mathrm{x} / \mathrm{a}$, correspond to three types of situations. On the rule of three, if the situations are written on the two by two matrix table as one unknown on three known, we do need to distinguish the place of given numbers and multiples, unnecessary to memorize three formulas. If we use the rule of three meaningfully on ratio and proportion, we do not need to distinguish these three types of formulas.

Tape and Number-Line diagram: Proportional number line

Proportionality or Rule of Three are represented on the tape and number-line diagram as well as table. Japanese has been using these representations since 1960s.

If the rule of three on the table is just used for the rule, relatively, the tape and numberline diagram are better to represent the meaning of proportionality because it works to represent co-variable with the images of the size of number on the line. Even if children do not know the term of proportion it supports to establish the way to develop expression and its calculation. We call it proportional number line. If we use the rule with tape diagram instead of table, it shows meaningful magnitude.

For explanation of meaning, we usually use various representations. Expressions can be derived from them. Proportional number line is also useful for studying fractions. The diagram of operational fraction with the remainder in Chapter 2, Figure 3, is also seen as a kind of proportional number line. Children draw table and diagram if their teacher clearly taught how to draw and use them. Teachers have to learn how to draw the proportional number lines.
Calculating (Whale Numbers) \times (Decimal Numbers)

1) Keita is thinking about wrapping the box with a ribbon around it. He needs 2.4 m of ribbon.
1 The price of the ribbon is 80 yen per meter. Let's find out how much it would cost for 2.4 m .
(1) Draw a number line with a taped diagram.

(2) Write an expression.

Expression \square

(3) Approximately, how much would the cost be? (Gakko Tosho Grade 5, Vol.1, pp29-30,2005;pp30-31,2011)

Exercise

Let's get the price for 2.4 m by the proportional number line.
For knowing how and what, please explain the way to use the proportional number line by yourself.

(Gakko Tosho Grade 5, Vol.1, pp30, 2005;pp32,2011)

Multiplication as for the Origin of Proportionality

Origin of proportionality is multiplication table. At the introduction of multiplication table, every row can be seen by additive property and later, we re-see it for multiplicative property. It is the origin of proportionality.

(Isoda\&Olfos, 2021. p.96)
For developing the proportionality, Gakko Tosho textbook (2021, Grade 3) introduces proportional number line as follows after students learned multiplication table.

After students learned proportion in grade 5, it is drawn as follows (Isoda, Olfos 2021).

How to draw the proportional number line

Firstly, draw the amount for unit which is known:

Secondly, draw the unknown for estimation:

One of the objectives to draw the proportional number line is searching the way of calculation. Its procedure for drawing is like this. Arrows show the calculation based on the proportionality.

Thirdly, add possibly known from estimation:

If not clear, let's change the unit for measuring the unknown:

The price of 2.4 m is not sure. If I change the unit 'm' to 'cm,' it is 80 yen for 100 cm . How much in 240 cm . Aha, 8 yen for 10 cm : it means 0.1 m !

Finally, search the way of calculation under the proportionality:

$80 \times 2.4=$? The length corresponds the price. The re-measuring process is represented by the arrows. The arrow sequence represents $80 \div 10 \times 24$. Aha!!

Major Reference and Further readings 5

Masami Isoda et al. (2010). Mathematics Education Theories for Lesson Study: Problem Solving Approach and the Curriculum through Extension and Integration, Journal of Japan Society of Mathematical Education, 92(11). 1-158.

Shin Hitotsumatsu et al. (2005). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda et al. (2010). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda (2012). Introductory Chapter: Problem Solving Approach to Develop Mathematical Thinking. In Isoda, M. \& Katagiri, S. edited (2012). Mathematical Thinking: How to Develop it in the Classroom. Singapore: World Scientific. 1-28.
https://doi.org/10.1142/9789814350853_0001
Masami Isoda, Tenoch Esaú Cedillo Ávalos, et al. (2012). Matemáticas para la educación normal (11vols). Estado de México : Pearson Educación de México.

Tenoch Cedillo, Masami Isoda, et al. (2013) Matemáticas para la educación normal : guía para el aprendizaje y enseñanza de la aritmética, Estado de México : Pearson Educación de México.

Masami Isoda (2015). The Science of Lesson Study in the Problem Solving Approach. In Inprasitha, M. et.al. edited. Lesson Study: Challenges in Mathematics Education. Singapore: World Scientific. pp.81-108. https://doi.org/10.1142/9789812835420_0006

Masami Isoda (2015). Dialectic on the Problem Solving Approach: Illustrating Hermeneutics as the Ground Theory for Lesson Study in Mathematics Education. In Sung, J. edit. Selected Regular Lectures from the 12th International Congress on Mathematical Education. Cham: Springer. pp.355-381. https://doi.org/10.1007/978-3-319-17187-6_21

Masami Isoda \& Aki Murata edited (2011). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda, Aki Murata, Aida Istino Yap edited (2015). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda \& Aki Murata edited (2021). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.
https://support.gakuto.co.jp/mathematics-textbook/
Masami Isoda, Raimundo Olfos. Edited. (2021). Teaching Multiplication with Lesson Study. Cham: Springer. DOI: 10.1007/978-3-030-28561-6

[^0]: ${ }^{3}$ Here, proportionality means properties to correspond proportion such as if x value become $2 \mathrm{x}, 3 \mathrm{x}$, and so on, corresponding y value become 2 y , 2 y and so on.

