Fraction for Teachers

Knowing What before Planning How to Teach

Masami Isoda, PhD/Prof. Director of CRICED, University of Tsukuba, Japan

First Edition for the SMASE-INSET project by JICA, Japan and ME, Nigeria Electronically Published from CRICED, University of Tsukuba, May 8, 2013

Revised September 21, 2019

Preface

Education is the work to prepare for the future. Developing children who learn mathematics by and for themselves is one of the major issues on mathematics education reforms in the world (See such as Isoda \& Katagiri, 2012). After the comparative study of mathematics classroom such as TIMSS video study in 90s, Japanese lesson study is the world-shared methodology as for the tools for professional development because the study indirectly demonstrated the quality of Japanese mathematics teaching and it is established by the lesson study. However, people often misunderstand the lesson study as for the talking about the class rather than studying subject matter. They enjoy the classroom observation likely listening to the music or watching the theatre. However, through listening to the music, and even if we enjoy talking about actors, we cannot prepare the good player ourselves. In Japanese lesson study, most efforts are done for the preparation of the class. The misunderstanding originated due to the limitation of the content guidebook to refer in English. On this reason, I have developed several resources which show the theory for the purpose to improve mathematics education with researches in the world.

For the workshop of SMASE-INSET project under Japan International Cooperation Agency (JICA), Japan and Federal Ministry of Education (FME), Nigeria, this booklet includes the essential theory for enabling teachers to plan the class for developing children who learn mathematics by and for themselves. It focused on the innovation of elementary school mathematics based on the content which is well written in the textbooks in each country and known by teachers. The workshop done in Nigeria was based on the author's experience in Central and South America, South East Asia and Pacific as well as in Japan.

May 7, 2013
Masami Isoda, PhD
CRICED, University of Tsukuba, Japan
Copyright for First edition:

Author allows anyone (including SMASE-INSET) to use this booklet when he/she acknowledges it in his/her reference completely: Masami Isoda (2013). Fraction for Teachers: Knowing What before Planning How to Teach. Tokyo: CRICED, University of Tsukuba which downloaded from http://mathinfo.criced.tsukuba.ac.jp/museum/dbook site/

Copyright for Second edition:

Second edition which divided the Chapter 6 to Chapter 6 and 7 and re-brushed up English was prepared for SEAMEO School Network. Author allows anyone to use this booklet when he/she acknowledges it in his/her reference completely: Masami Isoda (2013). Fraction for Teachers: Knowing What before Planning How to Teach. (2nd edition) Tokyo: CRICED, University of Tsukuba which downloaded from https://www.criced.tsukuba.ac.jp/online-contents.html

Pictures of the English Edition of Japanese-Mathematics Textbook are extracted from 'Study with Your Friends MATHEMATICS for Elementary School (Gakko-Tosho; 2005)'. When user extracts the pictures from the booklet, he/she needs the permission from Gakko-Tosho: Katsuaki Serizawa (e-mail: katsuaki.serizawa@gakuto.co.jp), GAKKO TOSHO CO., LTD. 3-10-36 Higashi-jujo Kita, Tokyo, 114-0001, Japan. https://support.gakuto.co.jp/mathematics-textbook/

Acknowledgment

Author Masami Isoda, PhD, acknowledges Gakko-Tosho which allowed the author to use the textbooks 'Study with Your Friends MATHEMATICS for Elementary School (2005) for this booklet. The content of this booklet was adopted for the workshop in SMASEINSET by the author. Author acknowledges the following colleagues who contributed to the workshop in Abuja, Nigeria in May, 2013.

National Trainers

Olasinde Kudrat, Hadizat Garba, Zainab Muhammad Shuaibu, Abubakar
Ibrahim
State Trainers
Ahmed Eneji, Mohammed Kabir Falalu,Monday Kurah

Japanese Staffs of JICA SMASE-INSET

Kazuhiro Okamoto, Tsuyoshi Ito, Hiroko Miura, Masako Tsuzuki, Hiromi Miyao
JICA Nigeria
Tatsuo Seki
Additionally, the author deeply acknowledges a number of colleagues who has been working with or supporting the author to develop the materials in the world.

Maitree Inprasitha (Thailand), Peter Gould (Australia), Catherine Lewis (USA), Raimundo Olfos (Chile), Tenoch Cediro (Mexico), Ui Hock Cheah (Malaysia), Suhaidah Tahir (Malaysia), Kaye Stacey (Australia), Max Stephens (Australia), Abraham Arcavi (Israel), Fadja (Indonesia) and all colleagues of APEC Lesson Study project: http://www.criced.tsukuba.ac.jp/math/apec/

Akinori Ito (JICA, PNG project)

About the Author

Affiliation and Address:
CRICED/Graduate School of Education, University of Tsukuba, 305-8572, Japan.
Website:
http://math-info.criced.tsukuba.ac.jp/
Title:
PhD (Education), Waseda University;
Honorary PhD (Mathematics Education), Khon Kaen University, Thailand;
Associate Professor, University of Tsukuba (1998-).
Education:
Master Program of Education, University of Tsukuba (1984).
Academic Membership:
Advisory Board Member, History and Pedagogy of Mathematics (2002-);
Project Overseer (Director), APEC Lesson Study Project in Mathematics (2006-);
Council Member, World Association of Lesson Study (2011-);
Chief Editor, Journal of Japan Society of Mathematical Education (2010-).
Awarded by:
Minister of Education (MEXT), Japan, as for the Best Educational Software in the Year 2005;

President of the Japan Publishers Association as for the Most Beautiful Book of the Year 2010 in the area of natural science;

Honorary PhD (Mathematics Education) by Khon Kaen University, Thailand as for his contribution to Khon Kaen University and Thailand, 2011.

Book for Acquisitions Program of Chilean Authors, Selected by National Committee of Culture and Art, Government of Chile. 2012.

President of the University of Tsukuba, as for the Best Faculty Member of the Year 2012. 2013.

Further CV and Publications:
Japanese Full
http://www.trios.tsukuba.ac.jp/Profiles/0006/0000997/profile.html
English Part
http://www.trios.tsukuba.ac.jp/Profiles/0006/0000997/prof_e.html

Table of Content

Preface 2
About the Author 4
Table of Content 5
Chapter 1: What is fraction? 7
Questions for professional development 1 10
Major Reference and Further readings 1 11
Chapter 2: Dividing Fraction and Quantity Fraction 12
Questions for professional development 2 15
Dividing Fraction 16
Exercise: 17
Operational (measuring) Fraction 17
Euclidian Algorithm 18
Exercise: 18
Quantity Fraction 18
Unit Fraction for measuring unit 19
Major Reference and Further Readings 2 19
Chapter 3: Addition of Fraction with Different Denominators 20
Exercise 20
A Sample of Arguments: 21
Questions for professional development 3 24
Major Reference and Further readings 3 25
Chapter 4: When does Fraction become Number? 26
Equivalent Fraction 26
Number Line 26
Fraction is Expression: Fraction as Quotient 27
Exercise. Let's read and answer 28
Questions for professional development 4 30
Major Reference and Further readings 4 31
Chapter 5. Fraction in relation to ratio and proportion 32
Questions for professional development 5 33
Fraction as Ratio 38
Exercise 38
Rule of Three: two by two matrix table 39
Tape and Number-Line diagram: Proportional number line 39
Exercise 40
Multiplication as for the Origin of Proportionality 40
How to draw the proportional number line 42
Major Reference and Further readings 5 42
Chapter 6. Multiplication and Division of Fraction (1) 43
Number line 43
Multiplication 44
How to find the expression from the situated problem 45
Exercise 46
Fraction \times Whole Number 46
Exercise 47
Fraction \times Fraction 47
Area Diagram. 47
Exercise 48
Major Reference and Further Readings 6 50
Chapter 7. Multiplication and Division of Fraction (2) 51
Rules of Multiplication and Division 51
Exercise: 51
Exercise: Fraction divided by Fractions 53
Major Reference and Further Readings 7 54
Further Readings 55

Chapter 6. Multiplication and Division of Fraction (1)

For developing the multiplication and division of fractions, this chapter mainly explains the necessary knowledge needed to produce the idea for it.

The idea of proportional number line was originated from Rene Descartes (1637). Japanese Math-Educators such as Takeshi Ito invented it to establish the Heuristic Teaching Approach for elementary school mathematics with the extension and integration curriculum sequence in the 1960s. From the 1990s, it became the world famous approach as for the representations to develop the competency for proportional reasoning. Japanese textbooks such as Gakko Tosho established well teaching sequence for developing it.

Number line

In chapter 1 and 2 , we recognize that shading activities, the parts for counting, is the root for the misconceptions of fractions for missing the idea of whole as for a unit. For developing children who learn mathematics for and by themselves (see Chapter 1), children are necessary to draw and use appropriate diagrams for explaining their ideas. On the previous chapters, appropriate diagrams need to show original unit with quantity fraction and the unit fraction for measuring its number, like measuring by using the remainder as for operational fraction. The tape and number line with quantities are appropriate diagrams on this condition. For developing children who will draw such a diagram, firstly, we have to develop children who draw the number line by and for themselves.

Number line which shows the position of number on the line is introduced by taking the same intervals by the unit of measurement recursively for comparing the size of number. At this moment, it looks like a line of discrete numbers because it is given
by interval as for the scale on the line and there is only one interval but no number between two numbers. On the process of extension of numbers, when students re-scale it by using smaller units or larger units, it begins to function as number lines which shows the position of various numbers and used for extension of numbers. At the beginning, children learn the ' 0 ' is the starting point on
the line instead of 'nothing.' On the number line, 0 shows the origin of position as for measuring by the interval (unit). The difference of positions shows the distance (the number of intervals: cardinal number).

If teacher does not teach the measuring by the unit from the starting point 0 , children may confuse one on counting intervals as scale number 0 on the left instead of the scale number 1 on the right. Children learn the number line as for comparing the size and ordering of numbers, and recognize the number on the base ten system. Taking interval is the preparations for the multiplication and division, too.

5 Write the correct numbers in the \square.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	\square	16	17	18	19
20	21	\square	23	\square	25	26	\square	28	\square
30	31	32	\square	34	35	\square	37	38	39
\square	41	42	\square	44	\square	46	47	\square	\square
50	51	\square	53	\square	55	\square	57	58	59

If your children do not know how to draw the number line, let's give them the opportunity to draw it by themselves. It is the activity of measurement by using arbitrary unit.

Multiplication

(Gakko Tosho, Grade 2, vol. 2 pp2-3, 2005; pp6-7,2011)
In the case for lower elementary school mathematics, children study how to use daily language mathematically on the situation. Definition of arithmetic operations is usually done on the situation in daily context because we have to develop children to use four arithmetic operations on their daily life.

On this issue, multiplication is introduced at the following situations: the number of dishes and the number of objects for each dish.

From the viewpoint of measurement, the situation is used to explain multiplication that the multiplication is measuring the amount of the quantity by the unit of quantity when the unit for the amount is known by the quantity (Ministry of Education, Japan, 1960; Freudenthal, 1983). For example, when the amount is 8 dishes and the unit for the amount is 2 cakes in each dish, the measured amount by the quantity is $8 \times 2=16$ (cakes).

This definition works for multiplication of decimal numbers and fractions as well as the situation of repeated addition. For example, when the amount of steel is 2.4 m and the unit weight for the steel is 1.5 kg for one meter, the measured amount by the quantity is $1.5 \times 2.4=3.6(\mathrm{~kg})^{4}$:

In relation to how to calculate, multiplication is explained with the repeated addition, however, multiplication of decimal numbers and fractions is not explained by the repeated addition but explained by multiplication table with distribution law on base ten place value system. For explaining the multiplication of decimal numbers and fractions, we can use the proportional number line which represents the meaning of multiplication by measuring.

How to find the expression from the situated problem

At the end of last chapter, you learned how to draw the proportional number line by the task below:

[^0]
1 The price of the ribbon is 80 yen per meter. Let's find out how much it would cost for
 \qquad m.

The box (in blank) is 2.4 at the end of last chapter. The children who have not yet learned the multiplication of decimal numbers and fractions cannot easily recognize that this task is multiplication. On the other hand, if we put the whole number such as 2 into the box, children who learned the multiplication of whole numbers could easily understand that this task is multiplication because multiplication is introduced in daily situations on the whole numbers.

On the context of extension of numbers and operations, Japanese teachers usually prefer this problem posing strategy like this form and ask children to put any number they want into the box and discuss how. Through putting into a simple number, children recognize this task as multiplication and in the case of whole numbers, they already learned, and in the case of fraction and decimal numbers, they did not yet learn. When the class begins this way, children recognize this task as the task for multiplication and they would like to inquire how to find the answer using what they already learned.

Exercise

Let's draw the proportional number line when the box (blank) is $2(\mathrm{~m}), 2.3(\mathrm{~m})$ or $\frac{3}{2}(\mathrm{~m})$ on 1 .

In this exercise, for answering in the case of 2.3 m , we have to change the unit from 1 m to 0.1 m as well as the case of 2.4 m . In the case of fraction, we usually change the unit from 1 m to the unit fraction: this case $\frac{1}{2} \mathrm{~m}$ is the unit for measuring. If 1 m is 80 yen, $\frac{1}{2} \mathrm{~m}$ is $80 \div 2$ yen. If $\frac{1}{2} \mathrm{~m}$ is $80 \div 2$ yen, $\frac{3}{2} \mathrm{~m}$ is $80 \div 2 \times 3$ yen. For considering like this, children need to draw a proportional number line and apply multiplication and division on the number line.

Fraction \times Whole Number

Please explain the following:

If 1 piece is $\frac{7}{5} \mathrm{~m}$ and addition of fractions is known, 4 pieces are $\frac{7}{5} \times 4=\frac{7}{5}+\frac{7}{5}+\frac{7}{5}+\frac{7}{5}=\frac{28}{5}$. After the explanation, we should ask children as follows: Is it possible to find an easier or faster way? Then, $\frac{7 \times 4}{5}$ is recognized as a simple way for $\frac{7}{5} \times 4$.

In mathematics, we usually produce shorter and simple ways. Seeking simplicity is a

 basic value of mathematics.
Exercise

In Gakko Tosho textbooks, the proportional number line changes from the tape diagram and number line to two number lines at Grade 5. Let's put the number in the box and answer: "We can cover an area of $\frac{4}{5} \mathrm{~m}^{2}$ with 1 dl paint. How many m^{2} can we cover with
\square dl of the paint?"

Fraction \times Fraction

If the box is a whole number, we already learned. If the box is a fraction such as $\frac{2}{3} \mathrm{dl}$, we can draw the proportional number line:

If we develop the way of calculation as well as multiplication of decimal numbers, it can be
 calculated as follows: $\frac{4}{5} \div 3 \times 2$.

After the explanation, we should ask children as follows: Is it possible to find an easier or faster way? Then, $\frac{4}{5} \div 3 \times 2=\frac{4 \times 2}{5 \times 3}$ is recognized as the simple way for $\frac{4}{5} \times \frac{2}{3}$.

In mathematics, we usually produce shorter and simple ways.

Area Diagram

In school mathematics, area diagram is usually recommended for use in explaining $(a+b)(c+d)=a c+a d+b c+b d$. On the area diagram, multiplication is a two-dimensional idea and it functions as for the model of commutativity. Some people strongly believe that the area diagram is the best way for explaining multiplication and division because it provides the wall painting/shading metaphor based on two dimensions. The misconception will appear if students do not feel the necessity to draw the same size diagram.

As long as teachers try to explain fraction as dividing fraction it might be true, however, shading activities of the area diagram itself is a major source of the misconceptions if children recognize fraction only by dividing fraction (see Chapter 2).

What is necessary to develop in students by and for themselves is that students are able to draw the area diagram by and themselves as for the tool for reasoning as well as the proportional number lines.

Historically, Euclid produced the theory under the dimension and Descartes overcame the wall between dimensions by the proportional number line which defined multiplication by the measurements.

Exercise

1) Let's solve the following task by three different methods.

2) Let's compare three methods. Which one do you recommend? Why do we need more?
3) There are a number of students who get the answer using the area diagram such as $\frac{4}{5} \times 3=\frac{12}{15}$. Why does the area diagram produce such answer?

There are two types of area diagram. The first type is already shown in the textbook. It shows the area of the wall itself for showing the painting. Another type of area diagram represents the following situation:

There is a wall in which we use $\frac{4}{5} \mathrm{dL}$ of paint for painting 1 meter of wall. How much liters do we need for painting 3 meters?

For this task, we draw the following two diagrams for the same meaning.

In both diagrams, the denominations of quantities are necessary because children might develop misunderstanding such as $\frac{4}{5} \times 3=\frac{12}{15}$ if there are no denominations.

Area diagram is fine to explain meaning. However, the children who still keep the dividing fraction, misunderstand the meaning of whole. Indeed, the left hand side of the above diagram can be read as $\frac{4}{5}$ if the square is the whole even though it shows quantity. Here, the key is a unit fraction $\frac{1}{5} \mathrm{dL}$ (quantity fraction!) as well as the whole 1 L . If teachers ask students just shading without considering these two units, we are not sure students understand well or not, even though teachers felt success to explain for him/herself.

Major Reference and Further Readings 6

Masami Isoda et al. (2010). Mathematics Education Theories for Lesson Study: Problem Solving Approach and the Curriculum through Extension and Integration, Journal of Japan Society of Mathematical Education, 92(11). 1-158.

Shin Hitotsumatsu et al. (2005). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda et al. (2010). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda (2012). Introductory Chapter: Problem Solving Approach to Develop Mathematical Thinking. In Isoda, M. \& Katagiri, S. edited (2012). Mathematical Thinking: How to Develop it in the Classroom. Singapore: World Scientific. 1-28.
https://www.criced.tsukuba.ac.jp/math/apec/ICME12/Lesson_Study_set/MATHEMATICAL\ THINKING\ (c)World\ Scientific/MathematicalThinking_chap01(c)WorldScientific.pdf
https://doi.org/10.1142/9789814350853_0001
Masami Isoda, Tenoch Esaú Cedillo Ávalos, et al. (2012). Matemáticas para la educación normal (11vols). Estado de México : Pearson Educación de México.

Tenoch Cedillo, Masami Isoda, et al. (2013) Matemáticas para la educación normal : guía para el aprendizaje y enseñanza de la aritmética, Estado de México : Pearson Educación de México.

Masami Isoda (2015). The Science of Lesson Study in the Problem Solving Approach. In Inprasitha, M. et.al. edited. Lesson Study: Challenges in Mathematics Education. Singapore: World Scientific. pp.81-108. https://doi.org/10.1142/9789812835420_0006

Masami Isoda (2015). Dialectic on the Problem Solving Approach: Illustrating Hermeneutics as the Ground Theory for Lesson Study in Mathematics Education. In Sung, J. edit. Selected Regular Lectures from the 12th International Congress on Mathematical Education. Cham: Springer. pp.355-381. https://doi.org/10.1007/978-3-319-17187-6_21

Masami Isoda \& Aki Murata edited (2011). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda, Aki Murata, Aida Istino Yap edited (2015). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo.

Masami Isoda \& Aki Murata edited (2021). Study with your friends: Mathematics for Elementary School (12 vols). Tokyo: Gakkotosyo. https://support.gakuto.co.jp/mathematics-textbook/

Masami Isoda, Raimundo Olfos. Edited. (2021). Teaching Multiplication with Lesson Study. Cham: Springer. DOI: 10.1007/978-3-030-28561-6

[^0]: ${ }^{4}$ This textbook is using Japanese notation: $1.5(\mathrm{~kg} / \mathrm{m}) \times 2.4(\mathrm{~m})=3.6$ (kg). In English notation, it should be $2.4(\mathrm{~m}) \times 1.5(\mathrm{~kg} / \mathrm{m})$ when ' 2.4×1.5 ' is read as ' 2.4 times 1.5 '. In English, '2.4 times' implicates 'multiplied by 2.4'. Thus, as long as you read ' 1.5×2.4 ' as ' 1.5 multiplied by 2.4,' Japanese notation of multiplication is understandable. Indeed, 'a x b' can be read as 'a multiplied by b' even in English. English usage has inconsistency.

