Route Finding

Guillermo Bautista, Jr

Science Education Specialist (Mathematics)
University of the Philippines
) In the case of the right tiles,

- How many routes does he have and how many steps does he need to get a gold medal?
- How do you explain it to your friends by using telephone?

How can we represent the route?

- By using trajectory, by using the words, or by using colour.

What do you count?

- By using the number of steps or by using the number of routes.

2.4 Route Finding
 Task 1

 (blue line) or to the left (red line) and both of them are called "one step."

) Let's pose the questions to your friends by using the right tiles.
> He is not allowed to jump crosswise (black line) and back to the previous position (black lines).

) On the tiles on the right, he would like to get one gold medal.

- How many possible routes does he have?
- How do you explain it to your friends through the telephone? - How many steps does he need?

) Let's create your own game boards by setting the rules by yourself and enjoy it with your friends.

Let's explain the learning objective of these activities by using the following words: Explain the route by using the given rules through changing representations. - Generalisation, specialisation, and inductive reasoning to find the pattern. - Mathematisation for addition and multiplication: Finding algorism, what if and what if not for creating something new.

 (-2

Activity from

Chapter 2, Task 2.4

Route Finding

Guillermo Bautista, Jr

Science Education Specialist (Mathematics)
University of the Philippines
> In the case of the right tiles,

- How many routes does he have and how many steps does he need to get a gold medal?

How do you explain it to your friends by using telephone?

Task 2

How many steps and routes from the topmost right tile to the bottom-most-left tile?

We already know the number of steps and routes from the 2×2 tile and the 3 $\times 3$. Maybe we can add them to the 4×4 tile.

Route Finding

Guillermo Bautista, Jr

Science Education Specialist (Mathematics)
University of the Philippines

Mathematical Values
Seeking.
$>$ Generality and
expandability
> Reasonableness and
harmony
> Usefulness and efficiency
> Simpler and easier
> Beautifulness

Mathematical Attitude Attempting to -
$>$ See and think mathematically
$>$ Pose questions and develop explanations

- Generalise and extend
> Appreciate others' ideas and change representations for meaningful elaborations

Mathematical Habits of Mind

 For living -> Reasonably and critically while respecting and appreciating others
> Autonomously and socially

- Creatively, innovatively and harmoniously to develop citizenship
> Judiciously in using various tools
> With empowerment in predicting the future through lifelong learning

Figure 1. Revised CCRLS Framework in Mathematics

Generalizability and Expandability

Pose questions and develop explanations

Algorithm (systematic)

Pattern

Representation

Chapter 2, Task 2.4
 Activity from

