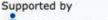


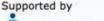
On Computational Thinking

Roberto Araya CIAE - IE Universidad de Chile

roberto.araya.schulz@gmail.com


APEC-TSUKUBA International Conference XVII

MINISTRY OF EDUCATION, CAUTURE, SPORTE, MINISTRY AND TECHNOLOGY - AND


APEC-TSUKUBA International Conference XVII

INVESTIGATION CALIFORNIA CONTRACTORIA INCLUENT SPORTS, CONTRACT AND DECEMBER CONTRACTOR

APEC-TSUKUBA International Conference XVII

Computational thinking

What is computational thinking and how does it differ from mathematical thinking?

- Ideas, concepts, and theorems are not enough
- It is necessary to calculate and solve
- This means algorithms:
 - elementary actions that a machine can execute

APEC-TSUKUBA International Conference XVII

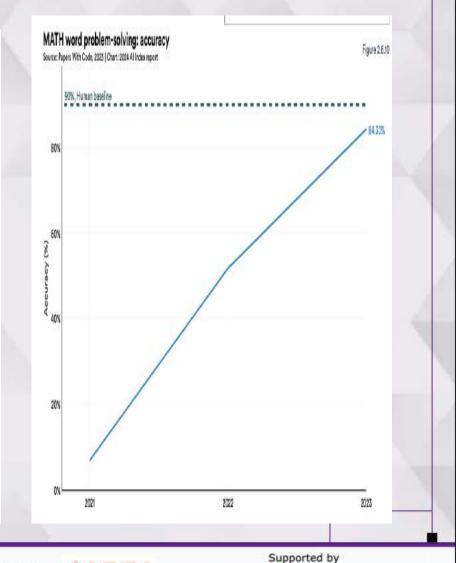
Masami Isoda Shigeo Katagir

MATHEMATICAL

THINKING

World Scientif

1.09


Mathematical reasoning

MATH

<u>MATH</u> is a dataset of 12,500 challenging competition-level mathematics problems introduced by UC Berkeley researchers in 2021 (Figure 2.6.10). Al systems struggled on MATH when it was first released, managing to solve only 6.9% of the problems. Performance has significantly improved. In 2023, a GPT-4-based model posted the top result, successfully solving 84.3% of the dataset's problems (Figure 2.6.11).

A sample problem from the MATH dataset Source: Hendrycks et al., 2023

MATH Dataset (Ours) Tom has a red marble, a green marble, Problem: a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose? Solution: There are two cases here: either Tom chooses two yellow marbles (1 result), or he chooses two marbles of different colors $\binom{4}{2} = 6$ results). The total number of distinct pairs of marbles Tom can choose is 1 + 6 = 7**Problem:** The equation $x^2 + 2x = i$ has two complex solutions. Determine the product of their real parts. Solution: Complete the square by adding 1 to each side. Then $(x + 1)^2 = 1 + i = e^{\frac{i\pi}{4}}\sqrt{2}$, so $x+1=\pm e^{\frac{i\pi}{8}}\sqrt[4]{2}$. The desired product is then $\left(-1 + \cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right) \left(-1 - \cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right) = 1 -$ $\cos^2\left(\frac{\pi}{8}\right)\sqrt{2} = 1 - \frac{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)}{2}\sqrt{2} = \left|\frac{1 - \sqrt{2}}{2}\right|$

APEC-TSUKUBA International Conference XVII

SEAMEO Journal • 2020 • Volume 1

A Framework for Computational Thinking in Preparation for Transitioning to a Super Smart Society

Dr. Roberto Araya

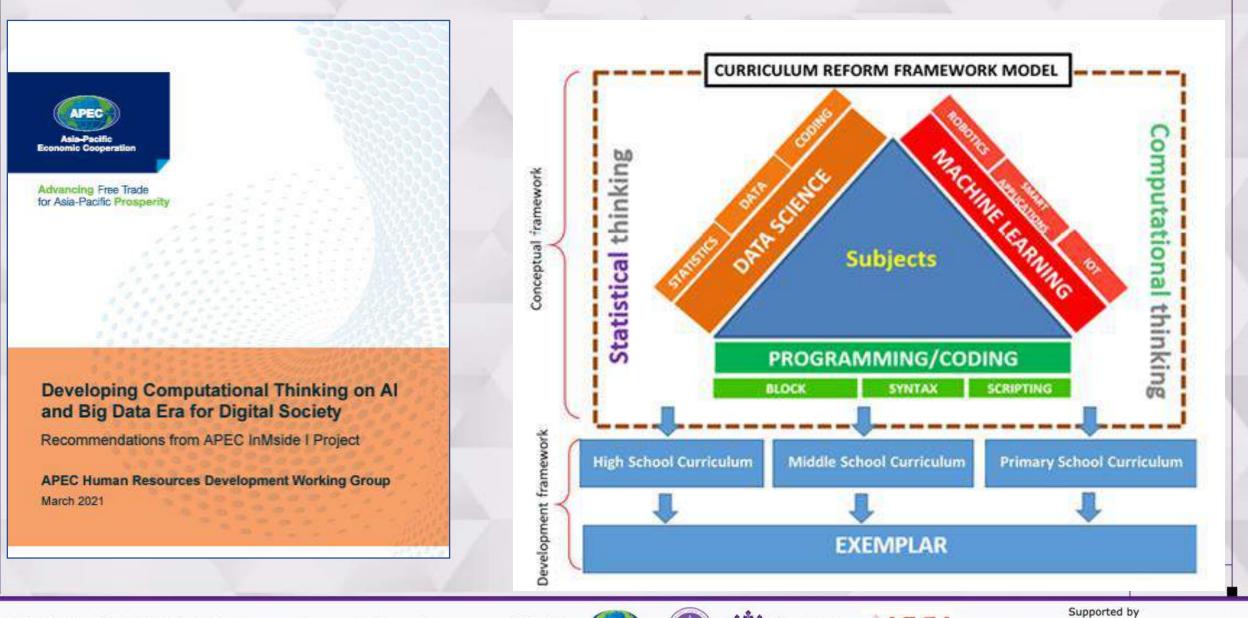
Professor Advanced Investigation Center on Education (CIAE) University of Chile

Dr. Masami Isoda Professor Faculty of Human Sciences

Center for Research on International Cooperation in Educational Development (CRICED) University of Tsukuba

Dr. Orlando González Assistant Professor Oraduata Sabaal of Human Salanaga

APEC-TSUKUBA International Conference XVII



ISTRY OF EDUCATION, FURE, SPORTE, INCE AND TECHNOLOGY (AM

APEC-TSUKUBA International Conference XVII

大学 Taukuba

COLFLEX, SPORTS

Three components of computational thinking

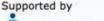
- Algorithmic Thinking
 - Abacus,
 - Logic Quantifiers
 - Steepest descent

Use, Selection, Adaptation and Building (USAB) Computational Models

- Chemotaxis
- Forest Fire Propagation
- Pandemia propagation
- Machine Learning Thinking
 - Decision Tree Induction,
 - Linear equations and Neural Networks

APEC-TSUKUBA International Conference XVII

Supported by


APEC-TSUKUBA International Conference XVII

INVESTIGATION CALIFORNIA CONTRACTORIA INCLUENT SPORTS, CONTRACT AND DECEMBER CONTRACTOR

APEC-TSUKUBA International Conference XVII

Programming languages

Assembly languages

- 1842–1849, Ada Lovelace
- 1947 Kathleen Booth
- 1950 had largely been supplanted by higher-level languages

Programming languages

- 1954 Fortran
- 1958 LISP
- 1967 Logo
- 1972 C
- 1990 Python

Visual programming languages

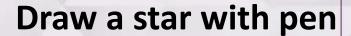
- 1987 Macromedia Authorware (Adobe)
- 1999 GameMaker
- 2002 Scratch

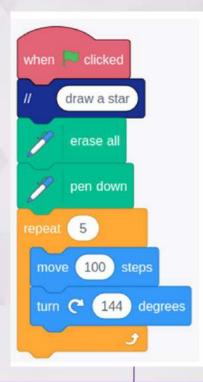
Al and automatic code generation

- Welsh, Computer Science, Havard University: "The End of Programming"
- Jensen Huang, NVIDIA

APEC-TSUKUBA International Conference XVII

Supported by





1843

	1. 13		1. 86-			Turny fairm. But Y										nine.			
	and a bound of both	Source (044+[2	52 mmore	0	100	12	1000	Norm D	Com C	0	l			る地田	SHIE!	NII C	Low lat	
	0000			100 C 10 C	1.1.1.1.1.1			-	Har-	0.00	0.00	0.0	No.						1111111111111
and the second	1000		1	100		000	10.3	-	10.82	10	10	2			-1 23-4				DOM:
	North Contraction		Sec. 11. 11. 12. 12	STUDIOUS/	P. C.	0.000000	0.0000.0	AURITIES &	0.010.00	0.0.000	(0000)	1. 1. 1.	9-4 9-4	.ş.,	(-1 103 1)				10055
	uninga uninga	- 1 - 1 - 1 - 1		SOLUTION OF	Solid Like	0000000000	11.11	000 000	8	2	0.0	10 - 10 - 10	9949 1				1021000		C CONTROL
	1.0.2	the Art K. K. & R. L. Harrison		000352000	0.014100	1000/0000	1.1.1.1.1.1.1	CELORE S	ADDA TO A DO	1010-00419		1. 1.1.2	(********) 	5.	(11. 10		

CreatiCode Scratch Plugin - Enable ChatGPT for Block-Based Coding

GPT builders Plugins / Actions builders plugin-development

4 🗹 May 2023

Hi everyone, we are proud to present our plugin "CreatiCode Scratch" to the community. This plugin helps ChagGPT to display block-based programs as images and learn to use new blocks in the CreatiCode extensions.

APEC-TSUKUBA International Conference XVII

ENVITED OF EDUCATION, SUTURE SPORTS, CODET AND TECHNOLOUT LANKS

APEC-TSUKUBA International Conference XVII

Stanford's Artificial Intelligence Index Report 2024

SPEEDY ADVANCES

In the past several years, some AI systems have surpassed human performance on certain benchmark tests, and others have made rapid progress.

 Image classification -Visual commonsense reasoning* -Basic-level reading comprehension Multitask language understanding[†] - Visual reasoning -Competition-level mathematics 120 luman baseline 5 %) relative line Perfomance I the human ba 20 2022 2012 2014 2016 2018 2020

> *Requires an AI system to answer questions about an image and provide a rationale for why its answers are true. *Tests an AI model's knowledge and problem-solving ability with regard to 57 subjects, including broader topics such as mathematics and history, and narrower areas such as law and ethics. *Data indicate the best performance of an AI model that year.

> > onature

APEC-TSUKUBA International Conference XVII

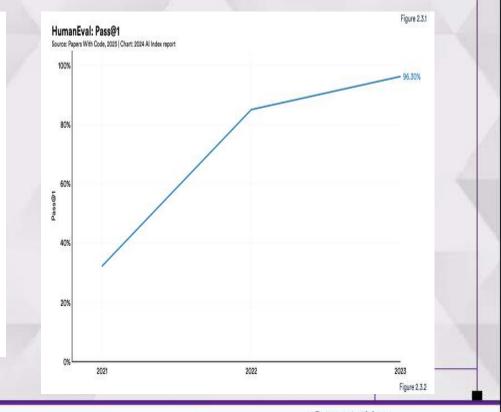
INFETRY OF EDUCATION, INFERE, SPORTS, CORE & AND TECHNOLOGY (APR

Chapter 2: Technical Performance 2.3 Coding

2.3 Coding

Generation

On many coding tasks, AI models are challenged to generate usable code or to solve computer science problems.


HumanEval

HumanEval, a benchmark for evaluating AI systems' coding ability, was introduced by OpenAI researchers in 2021. It consists of 164 challenging handwritten programming problems (Figure 2.3.1). A GPT-4 model variant (AgentCoder) currently leads in HumanEval performance, scoring 96.3%, which is a 11.2 percentage point increase from the highest score in 2022 (Figure 2.3.2). Since 2021, performance on HumanEval has increased 64.1 percentage points.

Sample HumanEval problem

Source: Chen et al., 2023

def incr_list(1: list):
 "*"Return list with elements incremented by 1.
 >>> incr_list([1, 2, 3])
 [2, 3, 4]
 >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
 [6, 4, 6, 3, 4, 4, 10, 1, 124]
 "**
 return [i + 1 for i in 1]

CRICED

APEC-TSUKUBA International Conference XVII

Supported by

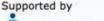
According to Geoffrey <u>Hinton</u>, Turing Award winner, LLMs <u>understand</u> and do not just reproduce memorization

- They do this because the first layers learn lowlevel characteristics, the following layers mix them, and so on.
- In the case of images, they learn edges, then interactions between edges, etc.
- In language they learn characteristics of language, so many words that specifically go together as hierarchical dependency structures.
- That generates true understanding.

Lecture at the Sheldonian Theatre, Oxford University, 19 February 2024

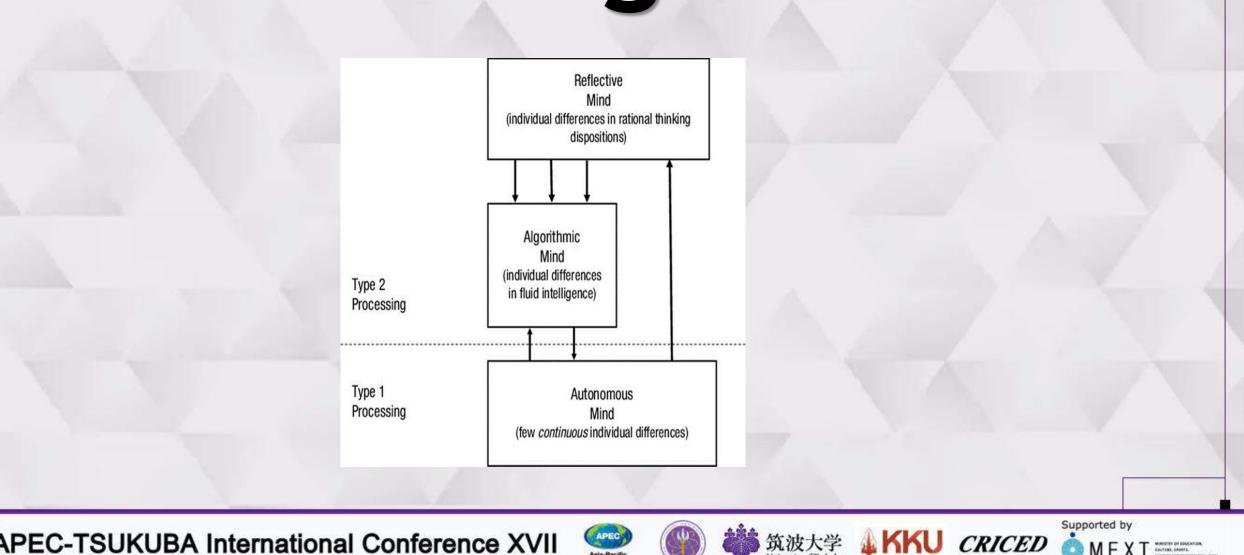
APEC-TSUKUBA International Conference XVII

he peration


APEC-TSUKUBA International Conference XVII

INVESTIGATION CALIFORNIA CONTRACTORIA INCLUENT SPORTS, CONTRACT AND DECEMBER CONTRACTOR

APEC-TSUKUBA International Conference XVII



APEC-TSUKUBA International Conference XVII

University of Tsukuba

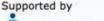
Argumentation

HOW DO I STOP IT AND CONTROL IT?	Type 2 Processing Type 1 Processing	Reflective Mind (individual differences in rational thinking dispositions) Algorithmic Mind (individual differences in fluid intelligence) Autonomous Mind (few <i>continuous</i> individual differences)
APEC-TSUKUBA International Conference XVII	🏂 筑波大学 🔬 🖌	Supported by

Argumentation

APEC-TSUKUBA International Conference XVII

UNIVERSIDAD DE CHILE INSTITUTO DE ESTUDIOS AVANZADOS EN EDUCACIÓN


APEC-TSUKUBA International Conference XVII

INVESTIGATION CALIFORNIA CONTRACTORIA INCLUENT SPORTS, CONTRACT AND DECEMBER CONTRACTOR

APEC-TSUKUBA International Conference XVII

INTERV OF EDUCATION, ILFLIEL, SPORTE, NUMER AND TECHNOLOUP LANSE

Textbooks and Tools

- Sumerian tables (2000 BCE)
- Ibn Khaldun (1377)
 - children should first be taught calculation,
 - divides sciences into two categories,
 - The perfect way of conveying ideas is eloquence
- The Treviso Arithmetic: Arte dell Abbaco (1478)
 - is the earliest known printed mathematics book in the West,
 - one of the first printed European textbooks dealing with a science.
 - It is a practical book intended for self-study.
- Comenius Orbis Sensalium Pictus (1658)

APEC-TSUKUBA International Conference XVII

frigmaneifa la foruma ve gandagin se rui tre. Ch de fe quela mentara presidimitar vecesi (6.6.).6 quale coope rel guadagiorit funo fras ignico Direc. dică 3.5 § 2.1 § 1.1 § 00 Direc. dică 3.5 § 2.5 § 1.1 § 1.1 § 00 Direc. dică 3.5 § 2.5 § 1.1 § 00 Quadagina ducă 2.4 § 8 § 0.1 § 1.4 § 2.5 § 2.

944 Somme vel guedignoane, so 3 g op 0 4 54 Suite filte rate ve copenne e punt frare beite.

La figunda arcorit fe form coff. Bornerobasima, per Christiko of Jacomo balan fattore of 2000 architecture of 2000 architecture fattore of 2000 architecture of 2000 architecture interactory 2000 architecture of 2000 architecture denando de nocha per torme. Beenflanno milit dinarat, 31 o. Trome here de una vel cancetala belognite de filo reactas namera va groffi, per de 34 free actionale de la voltavita de corrieren la pour manda. Librai contra la curvela de la grafe.

> 5 12014 Perebe Schultung ha multo fino cauedale i gua laguo merio, pur che Jacomore si befogna molpicare ristoridano cauedale per la quantitade etito compo coli.

JAN AMOS COMENIUS ORBIS SENSUALIUM PICTUS 1659 Translated by Charles Hoole

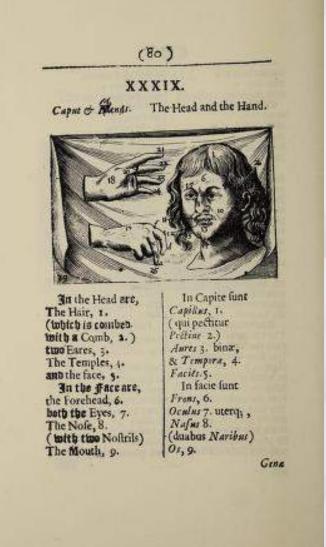
A Scolar Press Facsimi

THE SCOLAR PRESS LIMITED MENSTON, ENGLAND 1970 Comenius' extraordinary and revolutionary textbook, Orbis Sensalium Pictus (1658), enables us to see a cornucopia of meaning.

His method is iconic -- a method rarely used by historians of education -- and the result is uniquely illuminating.

The revolutionary book spread quickly across Europe and became the defining children's textbook for centuries

APEC-TSUKUBA International Conference XVII



ewater of specktick, server, spect,

the Cheeks 10.	Gene (Malar) 10.
and the Chin. 13.	& Mentum. 13.
The Mouth is fanced	Os feptum eft
with a Multacho, 11.	Myftace, 11.
and Lips; 12	& Labiis; 12.
a Tongue and Palate,	Lingua cum Palato,
and Teeth 16.	Dentibus 16
in the Checkbone.	in Maxillà.
A spans Chin is co.	Montum virile
bered with a Beard, 14.	tegitur Barba, 14.
and the eye,	Oculus verò,
(in which is the white	(in quo Albugo
and the Apple)	& Pupilla)
with eye-lids;	palpebris
and an eye-brow 15.	Se Inpercilie. 15.
The Hand being	Manus contracts,
clofed, is a Fift ; 17.	Pagnar 17. cli;
being open, is a	aperta,
palm,18. (hollow 19.	Palma, 18.
in the minut, is the	in medio, Vala, 19.
of the Hand, the extre-	
mity is the Thumb, 20.	extremitas, Pollex, 20.
with tour Fingers,	cum quatuor Digitis,
the fore-finger, 21.	Indice, 21.
the middle-finger, 22.	Medio, 22.
the Ring-finger, 23.	Annulari 23.
and the little-finger, 24.	& Anriculari, 24.
In every one are three	In quoliber
joynes a.b.c. (d.e.f.	funt arriculi tres a.b.a
and as many knuckles	& totidem Condyli d.c.;
	cum Unger. 25.
with a Nayl, 25.	

According to Thompson's preface, Orbis' fame and lasting usefulness is due to its ingenious integration of 3 characteristics:

- encyclopedism
- bilingualism
- visual imagery •

APEC-TSUKUBA International Conference XVII

Now, there is nothing in our understanding that has not passed through our senses.

Exercising our senses in correct perception of differences between things means laying the foundations for all wisdom, all wise discourse and all wise acts in life.

- Comenius

APEC-TSUKUBA International Conference XVI

Orbis Sensualium Pictus was revolutionary **However**, it focused in

Encyclopedic facts

No connecting ideas, algorithms, or computational thinking

 X L.

 The Fleth and the Bowels.

 Caro & Vi-ferra

 ferra.

 Image: Caro of the Vi-ferra

 ferra.

 Image: Caro of the Vi-ferra

 ferra.

 Image: Caro of the Vi-ferra

 Image:

(82)

Several natural (vernacular) languages in parallel No logical or mathematical languages

Passive reading

No active actions, no coloring, writing explanations, posing problems

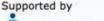
Isolated reader

No explicit social learning

Hierarchical teaching

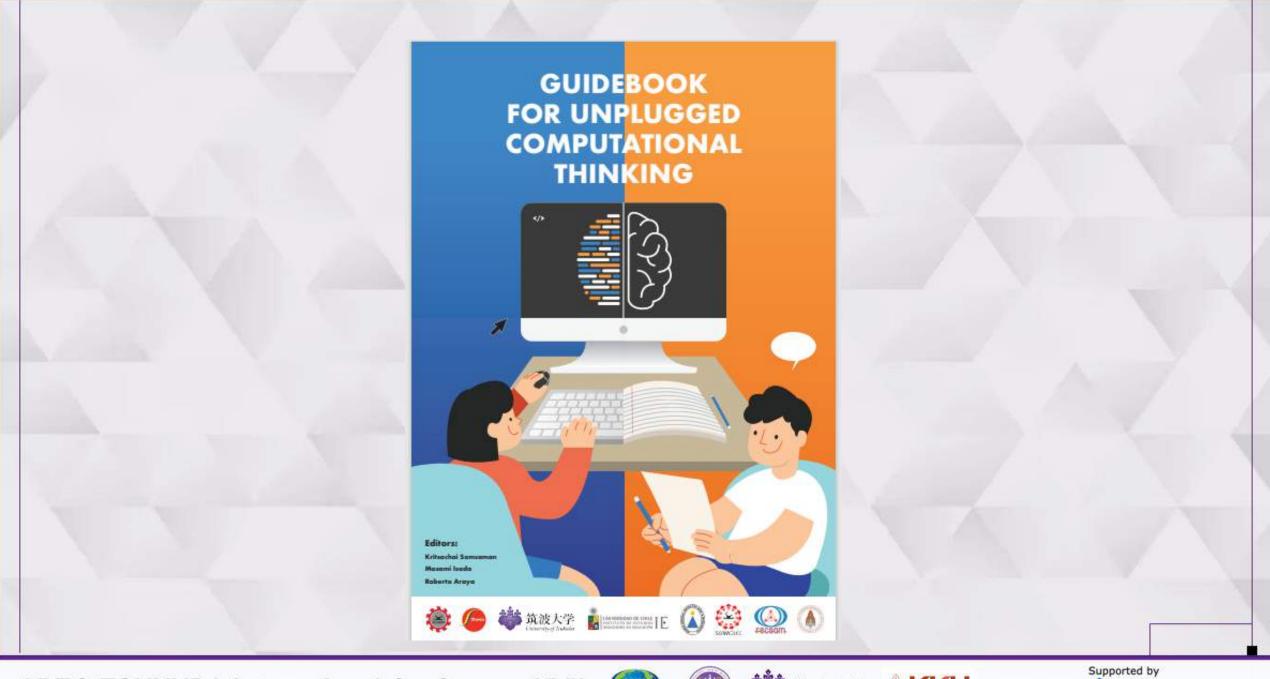
No dialogic pedagogy

APEC-TSUKUBA International Conference XVII


APEC-TSUKUBA International Conference XVII

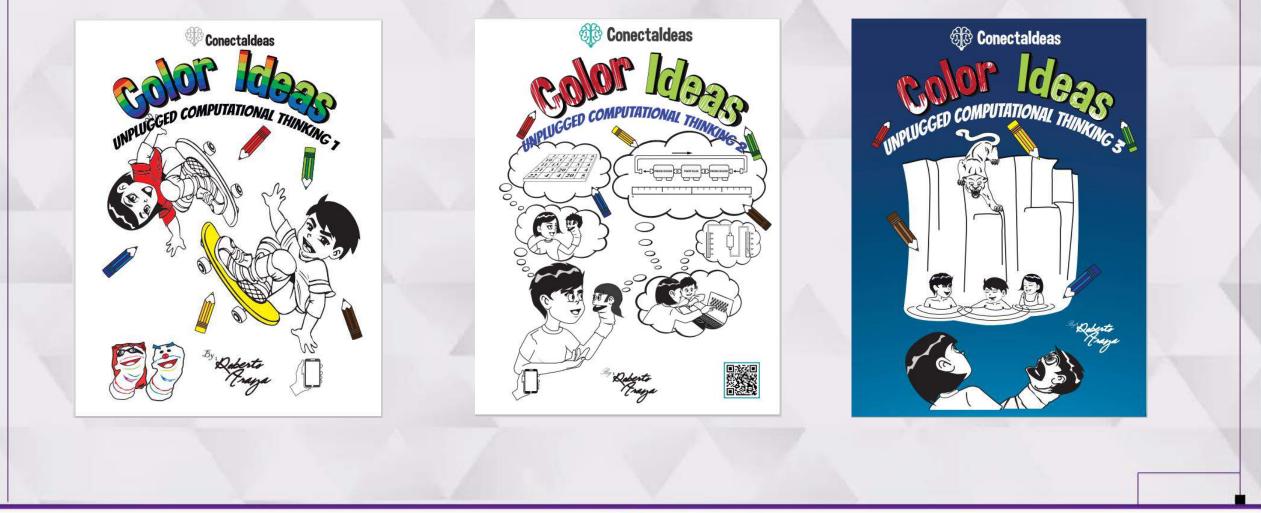
INVESTIGATION CALIFORNIA CONTRACTORIA INCLUENT SPORTS, CONTRACT AND DECEMBER CONTRACTOR

APEC-TSUKUBA International Conference XVII



CRICED

APEC-TSUKUBA International Conference XVII



KHON KAEN UNIVERSITY

APEC-TSUKUBA International Conference XVII

MINISTRY OF EDUCK COLTARX SPORTS.

E

First-order logic

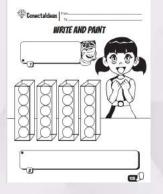
WRITE AND PAINT 🕸 Conectaldeas WRITE AND PAINT PAINT WHERE THE CARD IS MOST LIKELY TO BE IT IS NOT ON THE CARPE SHE ALWAYS AVES IT INSIDE A EXPLAIN IN YOUR OWN WORDS HOW YOU FOUND THE CARD 13B 9A

APEC-TSUKUBA International Conference XVII

女大学 🎍 K

MINISTRY OF EDUCATION, CALIFURE, SPORTS, SCHOOL AND TECHNOLOGY LATER

Universal and existential quantifiers



APEC-TSUKUBA International Conference XVII

筑波大街tto SMUO GRUCE / XV MEW 7- 19EY

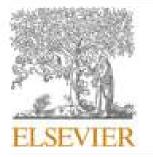
Are these 6 instructions really different?

Which ones are the same?

- a) Choose a color and in each box paint at least 2 balls of that color
- b) In each box choose a color and paint at least 2 balls of that color
- c) In each box for at least 2 balls choose a color to paint them
- d) Choose a color and in at least 2 boxes paint each ball of that color
- e) In at least 2 boxes choose a color and paint each ball of that color
- f) In at least 2 boxes for each ball choose a color to paint them

APEC-TSUKUBA International Conference XVII

Steepest descent algorithm



APEC-TSUKUBA International Conference XVII

CRICED

Journal of Steroid Biochemistry and Molecular Biology 241 (2024) 106499

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry and Molecular Biology

journal homepage: www.elsevier.com/locate/jsbmb.

Structural mechanism underlying variations in DNA binding by the androgen receptor

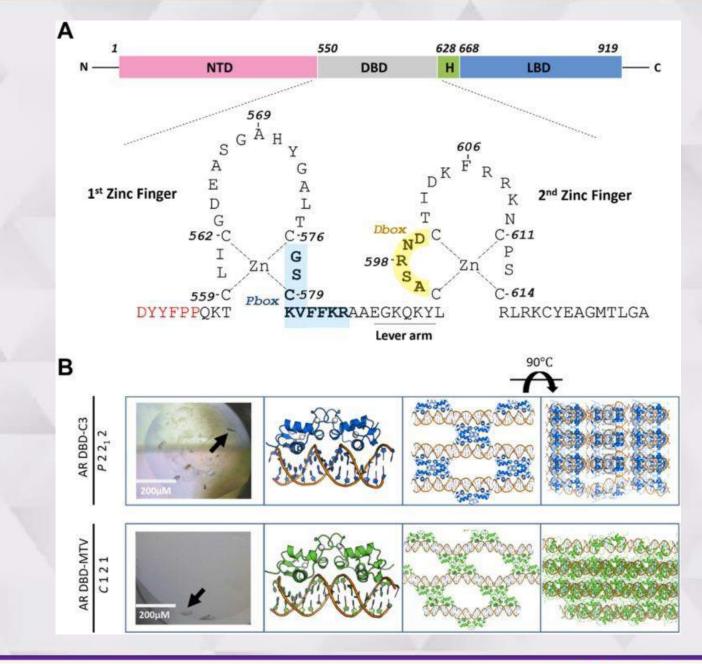
Xiao Yin Lee^{a,1}, Wout Van Eynde^{b,1}, Christine Helsen^a, Hanne Willems^a, Kaat Peperstraete^a, Sofie De Block^a, Arnout Voet^b, Frank Claessens^{a,*}

^a Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, Campus Gasthuisberg ON1 Herestraat 49 - box 901, Leuven 3000, Belgium
^b Department of Chemistry, Laboratory of Biomolecular Modelling and Design, Heverlee 3001, Belgium

Androgens are hormones such as testosterone. They play an essential role in the development and maintenance of male characteristics by affecting tissues of the male reproductive system as well as organs like kidneys, the musculoskeletal system, and the brain.

Androgen receptors allow the body to respond appropriately to these hormones

APEC-TSUKUBA International Conference XVII



Supported by

Protein construct of the Androgen Receptor DNA-binding domain (DBD) cocrystallization and the resulting crystal structures.

A) Schematic representation of the human AR-DBD.

B) The crystal packing of AR DBD.

APEC-TSUKUBA International Conference XVII

INISTRY OF EDUCATION, INITIAL SPORTS,

Enriching Elementary School Mathematical Learning with the Steepest Descent Algorithm

Roberto Araya 🕓

Article

Centro de Investigación Avanzada en Educación, Instituto de Educación, Universidad de Chile, Santiago 8320000, Chile; roberto.araya.schulz@gmail.com

Abstract: The steepest descent (or ascent) algorithm is one of the most widely used algorithms in Science, Technology, Engineering, and Mathematics (STEM). However, this powerful mathematical tool is neither taught nor even mentioned in K12 education. We study whether it is feasible for elementary school students to learn this algorithm, while also aligning with the standard school curriculum. We also look at whether it can be used to create enriching activities connected to children's real-life experiences, thus enhancing the integration of STEM and fostering Computational Thinking. To address these questions, we conducted an empirical study in two phases. In the first phase, we tested the feasibility with teachers. In a face-to-face professional development workshop with 457 mathematics teachers actively participating using an online platform, we found that after a 10-min introduction they could successfully apply the algorithm and use it in a couple of models. They were also able to complete two complex and novel tasks: selecting models and adjusting the parameters of a model that uses the steepest descent algorithm. In a second phase, we tested the feasibility with 90 fourth graders from 3 low Socioeconomic Status (SES) schools. Using the same introduction and posing the same questions, we found that they were able to understand the algorithm and successfully complete the tasks on the online platform. Additionally, we found that close to 75% of the students completed the two complex modeling tasks and performed similarly to the teachers.

check for updates Citation: Araya, R. Enriching

Asia-Pacific

Supported by

APEC-TSUKUBA International Conference XVII

Р. АРАЙЯ, Чили

(Roberto Araya Shulz, профессор. Centro de Investigación Avanzada en Educación, Instituto de Educación, Universidad de Chile)

> Перевод и обзор Ю. Тюриной под редакцией И. Высоцкого

АЛГОРИТМ НАИСКОРЕЙШЕГО СПУСКА ДЛЯ НАЧАЛЬНОЙ ШКОЛЫ

Введение и мотивация

2	1	3	5	6	3	3	4	3	0
10	2	2	2	7	4	5	5	4	2
11	13	2	3	4	9	10	3	14	13
21	3	19	4	4	19	5	14	4	3
22	4	4	40	5	25	6	16	25	5
30	24	5	18	6	25	6	6	19	4
32	4	6	16	6	17	6	6	4	4
2	4	26	15	12	19	27	35	25	15
32	34	36	37	38	10	47	41	35	14
38	44	35	8	39	28	29	38	18	13
11	4	4	6	40	38	9	10	11	12
0	5	3	4	41	8	8	5	4	2

APEC-TSUKUBA International Conference XVII

Ania-Pacific

Supported by

CRICED

INVERTION OF REACKINGS, INTERC SPORTS, INTERCE AND TECHNOLOGY LANSE

On sheet 4: name of the student (S1) who responds and solve the problem On sheet B: name of the student who pose the problem (S1) and name of the student (S2) who solve the problem 600 Marks to align sheet Student name K On sheet A: Coloring problem posed by Coloring Book Problem posed On sheet B: Coloring problem posed by student S1 to student S2 There can several balloons with additional information for the problem posed A: written by Coloring Book B: Written by student SI for student S2 Drawing that student should color according to the problem posed On sheet A or B, the student who solves the problem writes Student writes an an explanation justifying what and how he or she has done. explanation of his or QR her proposed solution code Sheet (in pairs A and B) QR code: contain information of the problem posed and

Fra...

QR code: contain information of the problem posed and connection to the Learningh Objectives of the curricula

APEC-TSUKUBA International Conference XVII

APEC-TSUKUBA International Conference XVII

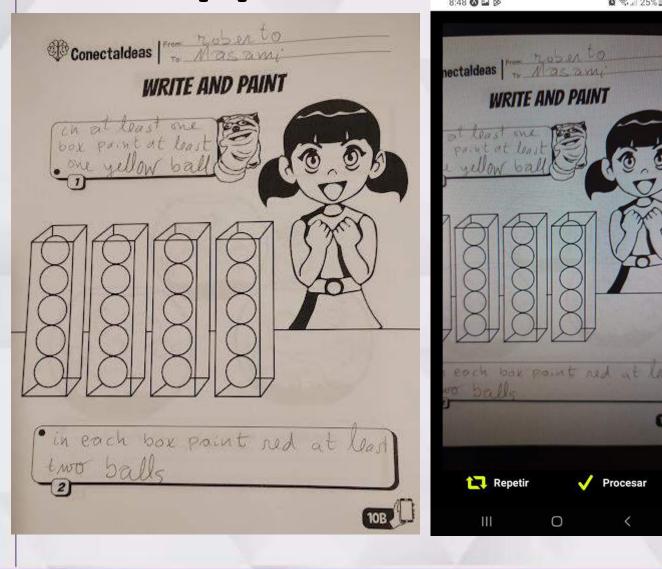
KHON MAEN UNIVERSITY

M E

COLTARS, SPORTS,

Minimal Hands Trainments door

APEC-TSUKUBA International Conference XVII



CRICED

ME

COLFLEX, SPORTS.

App manuscript transcription

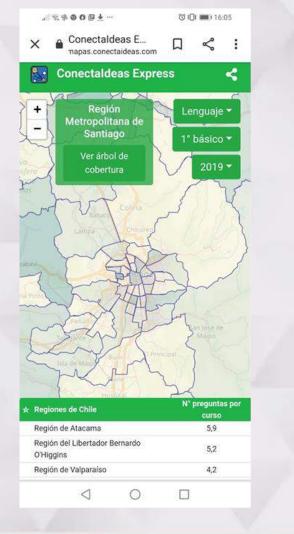
Conectaldeas From: roberto To: Masami WRITE AND PAINT in at least one box paint at least one yellow ball in each box paint red at least two balls

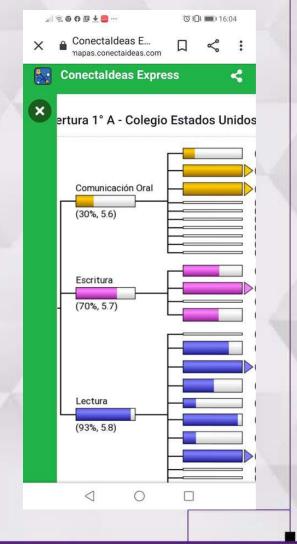
10B

APEC-TSUKUBA International Conference XVII

Procesar

0





Big data with students' activities

APEC-TSUKUBA International Conference XVII

On Computational Thinking

Roberto Araya CIAE - IE Universidad de Chile roberto.araya.schulz@gmail.com

Thank you

APEC-TSUKUBA International Conference XVII

ENETRY OF EDUCATION, SETTINE, SPORTE, CODECE AND TECHNOLOUT LANS