

STEM THINKING

Dr. Kritsachai Somsaman SEAMEO STEM-ED

Probably the most important skill that children learn is how to learn. ... Too often we give children answers to remember rather than problems to solve. This is a mistake.

Roger Lewin

Developing STEM thinking

involves cultivating a mindset that integrates the principles of Science, Technology, Engineering, and Mathematics to solve real-world problems, understand complex systems, and innovate.

Strategies to Foster STEM Thinking

- Interdisciplinary Learning
- Emphasis on Problem-Solving
- Developing High-Order Thinking
- Collaborative Learning
- Reflective Practice
- Integrating Technology
- Applying Real-world Connection

Developing students' STEM capability FEM-ED EAME Using problem-based learning pedagogy A real-world problem arises from the community **Evaluate and communicate** Research the problem the solution to the community and its context Science process Collaborate to solve **Design process** the problem Mathematics process

STEM in Elementary Education

Title	Driving question
Creepy crawly castle	How can we encourage minibeasts to visit and live at our school?
I like quiet, I like noise	Where and when should we use loud voices or quiet voices in our school?
Swooping birds	How can we protect ourselves from swooping birds?
Animal rescue	How can we design and make a model of a structure that animals can use to cross a road safely?
Chairs for bears	How can we make a chair that is comfortable, safe and the right size for our toy?
Water flow	How can we effectively transport water from a source to where it is needed?
	TitleCreepy crawly castleI like quiet, I like noiseSwooping birdsAnimal rescueChairs for bearsWater flow

_	Year	Title	Driving question
	Year 1	Growing food	How can we optimise the growth of our plants?
<		Our magnificent thing	What problem in your life could you solve by building something with reused materials?
		Rice baby	How can we make a device to keep our babies safe?
<	Year 2	Cryptic code	How can we make a bilingual sign?
~		Every bird needs a home	How can we improve or create habitat at our school that will encourage local species of birds to visit, live and breed?
		Little Red Hen's robot friend	How can robots help us?
<		Waste warriors	How can we reduce waste at our school?
<			

	Year	Title	Driving question
	Year 3	Cool lunch	How can we design a lunch container that will help protect food from being spoilt?
		Plastic pollution	What can we do to reduce the pollution caused by plastics?
		The long walk	How can you design shoes using recycled materials?
	Year 4	Honey bees	How can we raise awareness about the importance and the plight of the honey bee?
<		Mini robot garden	How can we use automation to sustain a garden?
/		Our new playground	How can playground equipment be designed to be engaging and exciting?

	Year	Title	Driving question	
\geq	Year 5	Biosecurity	How can we protect Australian food production?	
>		Evacuation robot	How can we design an evacuation route and program a robot to safely guide students from their classroom to a muster point in the event of an emergency?	
	Year 6	Bushfire risk warnings	How do you determine the risk of a bushfire occurring in order to issue an appropriate warning?	
><		Caring for country	How can we restore native vegetation disturbed by natural events or human activity?	
		Living off-grid	How can we develop simple and sustainable living solutions?	
\geq		Travel choices	How can we engage the school community in making better travel choices?	

STEM is naturally unplugged

How to teach Computational Thinking together with STEM Thinking?

Three components of computational thinking

Algorithmic Thinking

- Abacus,
- Logic Quantifiers
- Steepest descent

Use, Selection, Adaptation and Building (USAB) Computational Models

- Chemotaxis
- Forest Fire Propagation
- Pandemia propagation

Machine Learning Thinking

- Decision Tree Induction,
- Linear equations and Neural Networks

APEC-TSUKUBA International Conference XVII

Supported by

Science

Figure 3. Components of the CCRLS Science framework.

Table 1 Components of CCRLS Science Framework

Content	Scientific Skills, Processes and Thinking	Values and Attitudes
Scientific Inquiry Life and the Living World Material World Energy and Change Earth and Space Science, Engineering, and Technology for Sustainable Society	 Science Skills and Process Questioning Observing Classifying Measuring Hypothesizing Predicting Inferring Explaining Communicating Evaluating Identifying and controlling variables Formulating and testing hypothesis Defining operationally Interpreting data Planning and carrying investigations Thinking critical and creative thinking reasoning problem solving decision making applying and creating generating solutions safe use of equipment ICT skills 	 Caring for the living and non-living environment Social awareness Sustainability Responsibility Truth Interdependence Integrity Perseverance Self-discipline Self-discipline Self-esteem Empathy Appreciation Trust Critical reflection Inventiveness Tolerance Uncertainty Belief and interest Curiosity Honesty Objectivity Open-mindedness Respect for evidence

TEM-ED

CT with STEM Approach for Primary Education

•Worksheet 3.1 – Colouring Activities + Experiments
•Worksheet 3.2 – Colouring Activities + STE(A)M
•Worksheet 3.3 – Decomposition
•Worksheet 3.4 – Algorithmic Thinking
•Worksheet 3.5 – Pattern Recognition
•Worksheet 3.6 – Neural Networks

Algorithmic Thinking

1.Make a copy of the worksheet above. Cut out the steps of making an airplane.

2.Glue the six correct steps, in order, onto a separate piece of paper.

3.Make an actual paper plane following these steps.

1.Have another student fold other types of airplanes, without other students seeing how the plane is folded.

2.Show the finished paper plane to other students.3.Unfold the folded plane back into a single page4.Let other students try to fold the paper to the airplane again by observing the folded line on the paper.

5.Let the student discuss how they think

Pattern Recognition/Machine Learning

Identify elements that make you recognise the animal in these pictures as elephants. List down those elements.
 Identify behaviour of the elephants, what do they usually do.

https://www.firstcry.com/intelli/articles/teach-your-kidsabout-elephant-body-parts/

Foster STEM & Computational Thinking?

- Interdisciplinary Learning
- Developing High-Order Thinking
- Collaborative Learning
- Reflective Practice
- Integrating Technology
- Applying Real-world Connection
- Emphasis on Problem-Solving

Thank You