
SMASSE Project Kenya

What is **SMASSE** Project?

- An Acronym for Strengthening of Mathematics and Science in Secondary Education
- Kenya education System
- 8-4-4 System of Education
- * 8 years in Elementary
- * 4 years in Secondary (SMASSE FOCUS)
- # 4 years in University

- Joined venture between the Kenya government through MoEST, and Government of Japan through JICA initially on pilot basis
- Mainly involved in In-Service Training (INSET) of Serving Teachers in Mathematics and Science in Secondary Schools in Kenya
- * System of operation is the Cascade System of INSET

Why SMASSE?

- ♣ Consistently poor performance in Mathematics and Science
- Ministry of Education Science and Technology
- 4 (MoEST) and other stakeholders intervened
- **Baseline Survey**
- Attitude
- Pedagogy /Teaching Methodology
- Mastery of Content
- Developing teaching / learning materials
- ♣ Administration and Management
- SMASSE aims to strengthen teacher competence by addressing these areas of concern

SMASSE Intervention

ASEI movement through PDSI approach

The SMASSE Team came up with;

ASEI movement

Activity

Student

Experiment

Improvisation

THE AIM;

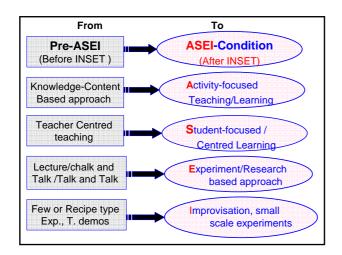
A shift from

Ineffective classroom practices

to

Effective classroom practices

ASEI /PDSI Pedagogic Paradigm Shift


· Is simply a shift from

The **Ineffective practices** during Pre-ASEI condition (before INSET)

tc

The ${\color{red}\textbf{Effective practices}}$ of ASEI condition (After INSET)

Based on four basic principles

During INSET teachers are:

 i) Exposed to carefully selected activities that enhance interest, understanding and retention

(Knowledge (Minds-on), Skills (Hands-on) and Attitude (Hearts-on))

- ii) Given opportunity to work together and come up with more
- iii) Demonstrate how to effectively use the same (through peer teaching at 1st)
- iv) Actualize in the school

To Attain 'ASEI' condition; 'Plan, Do, See, Improve (PDSI)' Approach (A must)

Plan activities based on ASEI principles

Do the planned activity

See or evaluate the process if objectives were achieved as planned

Improve on the whole process based on outcome of evaluation

Plan

Teachers to appreciate usefulness of carefully planning of

- Teaching / Learning activities
- materials
- examples before the lesson (Apart from schemes of work)

Emphasis is on how instructional activities will enable learners to:

- Get the rationale/value for the lesson
- Understand individual concepts and connections among them
- Retain the learning and apply it in real life situations
- > Get rid of learning difficulties and misconceptions
- Have more interest in the lessons

Do (Implement / Execute the Planned Activity)

Teachers are encouraged to;

- Present lessons in varied interesting ways to arouse learners' interest e.g. through role play, story telling
- Ensure active learner participation
- > Be a facilitator the teaching/learning
- deal with students' questions and misconceptions
- Reinforce learning at each step

Teachers carry out peer teaching on the ASEI lessons and later actualize in schools (during INSET)

See (Evaluate) (Lesson study)

Retraining on lesson evaluation

- ☐ Continuous as the lesson progresses and
- After the lesson

Ву;

- Observing students perform,
- Getting feedback and evaluating teaching process against the work plan.

Teachers are encouraged to involve the following during lesson evaluation;

- students
- fellow teachers
- administrators (DEO s, Principals)
- Quality Assurance and standards officers

Result ; Teachers are more open to evaluation

Improve

- Lessons are improved based on the evaluation by all parties involved
- Enables teachers to;
 - see the good practices in the lesson and strengthen them
 - see weaknesses in earlier lesson and correct them
 - *Avoid earlier mistakes in future lessons

Lesson Study (summary)

- Teachers plan together based on areas of need
- Teach in a school and observe
- Identify the weaknesses and the strengths of the lesson
- · Improve on the lesson
- · Re-teach the lesson

2. Climbing Learning Method

- Was developed by Professor Noboru Saito of Naruto University of Education, Japan, Mathematics department
- It is based on the information creation learning model
- It utilizes a learning structural chart, referred to as concept map, a research card and a table for reason of arrow lines during lesson instruction
- In a Concept map, Concepts are arranged hierarchically with the basic concepts at the bottom going up to the top accordingly
- Stresses; Knowledge must be organized structurally and functionally

In the concept map

students should fill in;

- the explanation of the learning elements,
- the formula,
- the examples
- self made problems and answers

3.Open-ended approach

Why are they good practices?

Net Impact on teachers and learners;

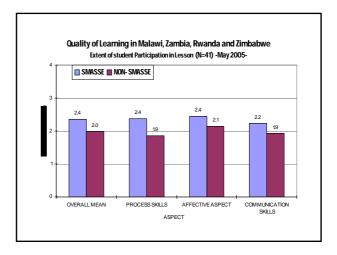
- Through these approaches positive impact on skills, knowledge and attitudes
- significant improvement in performance where SMASSE has been in operation during the project period

The graph below shows some of those results in Kenya;

A DEMONSTRATION

Deducing the identities on the sum and the difference of squares

Misconception taken care of;


 Students in Kenya always have this misconception

$$(a+b)^2 = a^2 + b^2$$

 $a^2 - b^2 = (a - b) (a - b)$

SMASSE focuses on the African region through SMASSE-Western, Eastern, Central and Southern Africa (WECSA)

- Purpose; strengthening the quality of teaching and learning of mathematics and science in member countries
- adopted and adapted SMASSE's approaches as a way of improving classroom practice
- Impact of these approaches, in the classroom in Malawi, Zambia, Rwanda and Zimbabwe were as follows;

SMASSE Project Impact Assessment Survey Results

- Nationwide survey
- Observations on the teachers and the learners after being exposed to the INSET

Net impact on Teachers;

- Plan better and more consistently
- Attend students' needs more
- Teachers are more open to team work
- More confident
- Try out new methods
- Face the challenge arising from lack of resources better
- Face the challenge of large classes better

Net impact on Students

- Are actively involved
- Show great interest and responsiveness
- Attend lessons more punctually and regularly
- Do their assignments more neatly and promptly
- Carry discussions beyond class time
- Relationship with the teacher improves
- Students' interest and curiosity aroused relate mathematics to their real life experiences
- teamwork among students
- develop key competencies such as problem-solving, analysis, synthesis and application
- Their attitude gradually becomes positive
- Results gradually improves

All these are in line with the education goals

Reforms expected;

- Positive impacts already mentioned as noted in the teachers and learners
- More include;
- positive Attitude for teachers and students
- ▶ Teachers will practice more effective Teaching Methodologies
- Teachers will have a better Mastery of Content
- ▶ Teachers will Develop effective teaching / learning materials
- There will be better Administration and Management in schools

In summary

- * These approaches are not a re-invention of the wheel
- A rallying point for the teachers to consciously focus on the student as the main player in the teaching /learning process
- A well planned lesson is the 1st step towards effectiveness in the classroom
- Evaluation provides basis for improved future performance
- Therefore systematic work planning and evaluation are very key

In essence;

Students should become more active in the learning process

while

Teacher carefully guides the process with more meaningful learning activities