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Introduction: design and improvement 
The Japanese lesson studies have become internationally famous. The core idea is that 
teachers design, try out, observe, analyze, and improve innovative lessons collectively. In 
this manner, lesson studies offer an alternative for the top-down approaches to 
innovations in education that proved to be problematic.  Apart form the fact that teachers 
are the key agents in this approach, and therefore develop a strong sense of ownership, it 
is the iterative character of the lesson studies that make them potentially powerful. In 
respect to the latter, we may observe a striking similarity with the mathematical teaching 
cycle of Simon (1995). He developed this idea of a teaching cycle in conjunction with the 
notion of a hypothetical learning trajectory. Point of departure for him was the question 
of how to reconcile the constructivist stance that students construct their own knowledge 
with the obligation of formal education to strive for pre-given educational goals. Simon’s 
solution to this problem is that teachers try to anticipate what mental activities the 
students will engage in when they participate in the envisioned instructional activities, 
and consider how those mental activities relate to the end goals one is aiming for. This is 
what he calls a hypothetical learning trajectory. The envisioned learning trajectory is 
hypothetical in that the actual learning trajectory may differ. The teacher, therefore, has 
to investigate whether the actual learning of the students corresponds with what was 
anticipated. This will lead to new understandings of the students’ conceptions. These new 
insights, and the experience with the instructional activities as such will form the basis 
for the constitution of a modified hypothetical learning trajectory for the subsequent 
instructional activities. The alternation of anticipation, enactment, evaluation and revision 
creates a cyclic, iterative, process that shows a strong resemblance with the lesson study 
approach, in which lesson experiments are not seen as tests of preconceived designs, but 
function as learning situations for teachers, which may open up unanticipated avenues. 
The hypothetical learning trajectory offers a basis for an elaboration of the lesson study 
approach from a socio-constructivist perspective. From this perspective, the task of the 
teacher is to help students to build on their own thinking while constructing more 
sophisticated mathematics. In this respect, one speaks of a transition from ‘instruction’ to 
‘construction’. What makes the latter difficult, is that the teacher can only indirectly 
influence what the students construct. This is exactly the problem that Simon tries to 
tackle with the hypothetical learning trajectory. By construing tasks or problem situations 
in which the students are expected to reason in a certain manner, the teacher tries to steer 
the constructing activity of the students. Designing long-term learning processes, 
however, is much more challenging than designing relatively short term learning 
trajectories. To reach given educational goals, one has to think of a more long term 
learning process. This is a very complicated task that surpasses the scope of what may be 
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expected of teachers. We may argue therefore that teachers should be offered a more 
general framework that enables them to design hypothetical learning trajectories on a 
day-to-day basis. Such a framework of reference may be offered by a so-called local 
instruction theory, which consists of a theory about a possible learning process, and the 
means of supporting that process. Such a theory is called local in that it is tailored to a 
given topic, such as addition of fractions, multiplication of decimals, or data analysis. 
Local instruction theories may be developed in design-research teaching experiments 
(Gravemeijer & Cobb, 2006), which are characterized by iterative trials and 
improvements similar to both lesson studies and Simon’s (1995) approach. 
The idea is that a local instruction theory offers a framework of reference for the teacher 
who is construing a hypothetical learning trajectory for his or her classroom at a given 
moment in time. To support teachers further, we may develop a set of exemplary 
instructional activities that the teacher may adopt and adapt. Mark, that the objective here 
is not to construe textbook like ready-made scripts, but to offer additional resources for 
teachers—which they can choose from, and to which they can make their own 
adaptations. That is to say, although the teacher may rely on theory and tasks developed 
by others, there is still room—and a need—for the teacher to construe his/her own 
hypothetical learning trajectories. For, tasks will have to be trimmed to the specific 
situation of this teacher with his/her own goals, with these students, at this moment in 
time. To make such decisions, the teacher has to construe hypothetical learning 
trajectories, but when doing so, the local instruction theory can be used as a framework of 
reference. The theory can be seen as a travel plan, while the teacher and the students 
make the journey (to borrow Simon’s (1995) journey metaphor). Like a journey, a long-
term teaching-learning process can be planned in advance, and in a similar manner, the 
actual teaching-learning process has to be constituted in interaction with the conditions 
and developments one encounters. In this sense, an externally developed local instruction 
theory can function as a ‘travel plan’ for the teacher, or better, informs the teacher’s 
travel plan. Like a traveler, the teacher will have to adjust this plan continuously by 
construing hypothetical learning trajectories that fit his/her interpretations of, and choices 
in, the actual situation.  
 
In this paper I want to elucidate the importance of the design of local instruction theories 
that aim at supporting students in constructing, or reinventing, mathematics on their own 
accord. In addition, I want to elaborate one of the key instructional design heuristics that 
may help designers/researchers to develop such local instruction theories. That is the 
‘emergent modeling’ design heuristic that is part of the domain-specific instruction 
theory for realistic mathematics education (RME). Finally, I will address the relation 
between the design of local instruction theories and lesson studies, and I will argue that 
lesson studies can be cast as an extension of the design research that aims at developing 
local instruction theories. I will start by discussing the importance of supporting students 
in constructing, or reinventing, mathematics on their own accord. I will do so by first 
asking the question, what makes mathematics so difficult? 
 
What makes mathematics so difficult? 
In answering the question, ‘What makes mathematics so difficult?’ we may start by 
asking ourselves, ‘How do people learn mathematics?’ Here we may consider various 
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sophisticated learning theories. But, if we limit ourselves to the general practice of 
learning mathematics in schools, it may be more useful to take our point of departure in 
popular notions of teaching and learning. In practice, learning is usually thought of as 
making connections between what is already known, and that what has to be learned. In 
the case of mathematics, the latter concerns an abstract, formal body of knowledge. I 
believe that it is this popular notion of learning mathematics as making connections with 
an external body of knowledge makes learning mathematics so difficult. In the following, 
I will first substantiate this claim; next I will describe an alternative that makes 
mathematics more accessible. 
 
The learning paradox 
If we think of learning as making connections with the external body knowledge that has 
to be acquired, the task for mathematics educators is to shape mathematics instruction 
that helps students in bridging the gap between the student’s personal knowledge on the 
one hand, and the abstract formal mathematical knowledge on the other hand. However, 
it seems as if the gap between the formal mathematical knowledge and the personal 
knowledge of the students is too big.  
To accommodate to this problem, curriculum developers try to devise tactile or visual 
models (often called ‘manipulatives’) that represent mathematical relationships and 
concepts to students in a readily apprehensible form. The underlying idea is that these 
external representations will facilitate the process of making connections with the 
represented mathematical relationships and concepts. In this respect the word 
‘transparent’ is used, which suggests that students can look through the models and see 
the mathematics. This will enable the students to construct internal mental representations 
that mirror those embodied in the external representations.  
 
The most well known manipulatives that fit this representational view are the Dienes 
blocks, or MAB materials, that are meant to concretize the decimal system (see fig. 1).  
 

 
 

Figure 1. Dienes blocks. 
 
Students are expected to see one big block as consisting of one thousand tiny cubes, a flat 
slice as one hundred, and a ‘rod’ as ten tiny blocks. Practice, however, shows that this 
interpretation is not self-evident (Labinowics, 1985). 
Cobb, Yackel and Wood (1992) claim that the problematic character of the Dienes blocks 
is inherent to the assumption that instructional representations are the primary source of 
the students’ mathematical knowledge. For us it is self-evident what these instructional 
representations signify, but this is not the case for most students. The plausibility of the 
usefulness of representations resides in the fact that we, as adult mathematics educators, 
experience mathematical constructs, such as, ‘tens’, ‘ones’, and ‘hundreds’ as object-like 
entities that can be pointed to and spoken about. An feeling that is not only due to our 
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individual mathematical sophistication, but also to our experience of being able to talk 
and reason about these ‘objects’ unproblematicly while interacting with others. 
As a result of such experiences, one may start to entertain the notion of mathematics as 
an independent, objective body of knowledge. From a constructivist point of view, 
however, the assumption that objective knowledge exists independently of the act of 
knowing is highly problematic. Likewise, the idea that that objective knowledge can be 
accessed directly via external representations is equally problematic.  
 
Teachers and instructional designers are experts who already comprehend the abstract 
mathematical knowledge that the students still have to acquire. From their perspective, it 
makes perfect sense to try to develop ‘transparent’ models that make the abstract 
mathematical knowledge apprehensible for students. They see their knowledge of the 
decimal system reflected in the blocks. For students, however, the Dienes blocks are 
nothing but just wooden blocks. We cannot expect the students to see more sophisticated 
mathematics in the blocks than the mathematics they already have acquired. This raises 
the question of how students are to learn abstract mathematics from concrete external 
representations. This problem is known as the ‘learning paradox’ (Bereiter, 1985), which 
Cobb et al. describe as:  
 

(T)he assumption that students will inevitably construct the correct internal 
representation from the materials presented implies that their learning is 
triggered by the mathematical relationships they are to construct before they 
have constructed them. (…)  
How then, if students can only make sense of their worlds in terms of their 
internal representations, is it possible for them to recognize mathematical 
relationships that are developmentally more advanced than their internal 
representations?  (Cobb et al., 1992, p. 5) 

 
The consequence is that when students do not see what there is to be seen, the teacher 
does not have many options, other than to spell out the correspondences between the 
blocks and the algorithm in detail. The result of that policy, however, will sooner be rote 
learning than understanding. This is exactly what happens with a conventional ‘mapping 
instruction’, in which actions with the blocks are mapped upon steps in execution of the 
written algorithm on paper, and vise versa. As might be expected from the lack of 
transparency of the blocks, mapping instruction does not lead to understanding or 
proficiency (Resnick & Omanson, 1987). Moreover, students develop al sorts of ‘buggy 
algorithms’ in trying to get a handle on procedures they do not understand (Brown & Van 
Lenn, 1982). Another effect of teaching about a body of knowledge that is not accessible 
for the students, is that they start to treat school mathematics and everyday-life reality as 
two disjunct worlds. 
 
School math and student reality, two different worlds 
We may illustrate this with an interview with a first-grader conducted by Cobb (1989). 
First, the student, Auburn (Grade 1), is presented with some addition tasks that are 
presented as numerical expressions: 
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       16 + 9   = 
 28 + 13 = 
 37 + 24 = 
 39 + 53 = 
 
In this part of the session, Auburn solves ‘16 + 9’ by counting on, and she arrives at the 
answer, ‘16 + 9   = 25’. Later, Auburn has to fill out a worksheet that contains the same 
task, now written In a column format (see fig. 2). 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Aburn’s worksheet.       
 
Auburn solves this problem in the following manner: 
  
           16 
             9 + 
           15 
 
This then constitutes the starting point for the following exchange between the 
interviewer (I), and Auburn (A).  
 
I : Is that correct that there are two answers? 
A : ? 
I : Which do you think is the best? 
A : 25 
I : Why? 
A : I don’t know. 
I : If we had 16 cookies and another 9 added, would  
           we have 15 altogether? 
A : No. 
I : Why not? 
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A :   If you count them altogether you would get 25. 
I :   But this (15) is sometimes correct?  
          Or is it always wrong? 
A :   It is always correct.For us this answer may be highly surprising, but for Auburn, 
the mathematics of the worksheets seems belong to a different world, a world that 
appears to be disconnected from the world of everyday-life experience. One of the 
consequences is that Auburn will not be inclined to use everyday-life knowledge to make 
sense of ‘school-math’ problems. For her mathematics has its own set of arbitrary rules 
that you just have to accept on the authority of teachers and textbooks.  
 
In the beginning of this paper, I mentioned that the difficulty of learning mathematics 
could lay in the formal, abstract, character of mathematics. We may conclude from the 
above, however, that the actual problem seems to be in level of sophistication of the 
mathematical knowledge of teachers (and textbook authors). The large difference 
between the abstract knowledge of the teachers and the experiential knowledge of the 
students causes a mismatch. Teachers and textbook authors (mis)take their own more 
abstract mathematical knowledge for an objective body of knowledge with which the 
students can make connections. However, the gap between the knowledge of the teachers 
and the knowledge of the students is too big to make this work. Instructional 
representations cannot bridge this gap, because, what those materials signify is in the eye 
of the beholder. Only the experts who know the mathematics can see the mathematics.  
 
Different frameworks of reference 
In this respect, we may quote Van Hiele (1973), who observed that teachers and students 
have different frameworks of reference, and as a consequence, may use the same words 
but with a different meaning.  
Van Hiele takes the word ‘rhombus’ in geometry as an example. Some junior-high-
school students will claim that a square is not a rhombus, unless maybe if it is tilted (see 
fig. 3).  
 
 
 
 
 
 

Figure 3. Is a square a rhombus? 
 
For students who reason this way, the word rhombus signifies a figural shape. For the 
teacher, however, the word rhombus signifies a set of geometrical relations:  

- the sides are two by two parallel, 
- all sides have equal lengths, 
- the diagonals intersect orthogonal, 
- the facing angles are equal. 

 
The teacher will accept a sloppy drawing of a quadrangle as a rhombus if he or she is told 
that all sides have equal lengths. On the basis of this, the teacher will conclude that the 
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diagonals intersect orthogonal, that the facing angles are equal, and that the sides are two 
by two parallel. For the students who connect the word rhombus with the figural image, 
however, such a line of reasoning does not make any sense. 
This example illustrates Van Hiele’s claim that teachers and students often speak 
different languages—without being aware of it. In fact, the teacher is talking about a 
mathematical reality that does not exist for students. The teacher thinks of a rhombus as a 
mathematical object that derives its meaning from a set of geometrical relations. But for 
students, who have not construed the necessary network of geometrical relations, there is 
no mathematical object to reason about. 
 
This phenomenon may be illustrated with another example.  
For us as adults, ‘1+1=2’, shows common sense, but this may be very different for young 
children. At a certain age, young children do not understand the question: ‘How much is 
4+4?’ Even though they may very well understand, that 4 apples and 4 apples equals 8 
apples. The explanation for this phenomenon is that, for them, number is still tied to 
countable objects, like in ‘four apples.’  
At a higher level: 4 will be associated with various number relations, such as:  
 
4 = 2 + 2 = 3 + 1 = 5 - 1 = 8 : 2, etc. 
 
At this higher level, numbers have become mathematical objects that derive their 
meaning form a network of number relations (c.f. Van Hiele, 1973). When an 
elementary-school teacher is talking about numbers, he or she may very well be talking 
about mathematical objects that do not exist for students. So here again our everyday-life 
notion of teaching as helping students in making connections with new knowledge proves 
to be inadequate. How can students, for whom a number is a sort of adjective, make 
connections with numbers as mathematical objects? 
I might add, that telling students that 2+2=4, etcetera, will not help if the students do not 
know what ‘2+2’ means. 
 
Learning as making connections, the source of the problem 
In sum, we may conclude that the problem does lay in the fact that the common 
conception of learning, as making connections between the internal knowledge of the 
student and some external knowledge that has to be acquired, does not fit mathematics 
education. It causes teachers to try to force students to make connections with external 
knowledge that does not exist for them. In relation to this the observation of Davis and 
Hersh (1986) comes to mind, who describe of mathematicians who speak of esoteric 
mathematical constructs as if they are real objects, which are completely unimaginable 
for non-mathematicians. Apparently teachers and students live in two worlds, the world 
of the mathematics of the teacher, and the world of everyday life of the students. 
 
Instruction in mathematics that is based on the popular notion of ‘learning as making 
connections’ apparently asks from students to make connections with a body of 
knowledge, which they cannot grasp. My conclusion, therefore, is that it is the tradition 
of trying to teach along these lines, which makes mathematics so difficult to learn. One 
might, of course, counter that reality shows that (at least some) people appear to have 



 
Emergent modeling and iterative processes of design and improvement in mathematics education  8 

learned mathematics in spite of this form of instruction. We may reason, however, that 
their actual learning process will have been different from making connections. We may 
conjecture that what those mathematics learners really did was construct their personal 
theories about the alien body of knowledge that was presented to them. Theories they 
revised and adjusted on the basis of experiences and feedback.  
This kind of learning has serious drawbacks, however. In the first place, it is very 
difficult. The process generates many misconceptions that one has overcome. The second 
drawback is the inherent uncertainty, the learner is always guessing about what is really 
meant by the teacher or the textbook. Knowledge and understanding is always 
preliminary, until the next contradiction that will show that one’s latest conjecture of 
what the body of knowledge entails is still off. A very likely consequence is math anxiety. 
Moreover, this lack of certainty, and always being dependent on the authority of teachers 
and textbooks, is in contradiction with the very nature of mathematics. Even if one 
develops some proficiency in this manner, we may ask ourselves if it is mathematics one 
has learned. 
 
We may conclude that the popular notion of learning as making connections between 
what the learner already knows, and that what has to be learned, does not fit mathematics 
education. We may summarize the problems:  

- First, there is the problematic character of body of knowledge, with which 
students have to make connections. For them, this body of knowledge does not 
exist, this knowledge only exist in the minds of teachers and textbook authors. 

-  Second, trying to represent objective, scientific, knowledge with ‘transparent’ 
instructional materials results in a learning paradox—how can students learn if 
they cannot see the mathematics, they do yet not know, in the materials?  

 
Realistic mathematics education as an alternative 
A different way of critiquing the instructional approaches discussed above, is by 
observing that the end product of the mathematical activity of many outstanding 
mathematicians is taken as a starting point for the instruction of young students. 
Freudenthal (1973, 1991) calls this an anti-didactical inversion. The alternative, he goes 
on to say, is to create opportunities for students reinvent mathematics. In relation to this, 
he speaks of ‘mathematics as a human activity’. Just like the activity of mathematicians 
resulted in mathematics as we know it now, the activity of students can result in the 
construction of mathematics. This approach, therefore, offers an alternative for teaching 
students mathematics as a ready-made product. 
 
Let me elaborate Freudenthal’s point further. For him—as a mathematician—
mathematics is primarily an activity. An activity that he denotes ‘mathematizing’ or 
organizing. In relation to this, he speaks of the activity of organizing subject matter to 
make it more mathematical. This may concern, both organizing matter from reality to 
make it accessible for mathematical means, and organizing mathematical matter to make 
it more mathematical. We may relate ‘more mathematical’ in this context to 
characteristics like general, exact, sure and brief, which suggests mathematical activities 
such as generalizing, formalizing, proving, and curtailing. Freudenthal (1973) argues, that 
students can reinvent mathematics by mathematizing, although he also acknowledges that 
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the students cannot simply reinvent the mathematics that took the brightest 
mathematicians eons to develop. This is why he proposes guided reinvention. Teachers 
and textbooks have to help the students along, while trying to make sure, that the students 
experience learning mathematics as a process of inventing mathematics for themselves. 
In order to accomplish this, a reinvention route has to be developed. Therefore, teachers 
need the help of instructional designers, who in turn may be supported by researchers.  
 
Designing reinvention routes exactly has been the mission of the Freudenthal Institute in 
the Netherlands, over the past decades. This has resulted in, what we call, a domain-
specific instruction theory for realistic mathematics education (RME). RME theory is the 
result of generalizing over various local instruction theories, which describe how a 
certain topic can be taught in accordance with Freudenthal’s idea of mathematics as a 
human activity.   
In this paper I will focus on the RME design heuristic of emergent modeling. Before 
doing so, I will present a brief example to illustrate the idea of guided reinvention. 
 
Long division 
This idea of guided reinvention has proved itself productive in relation to the written 
algorithms. I will illustrate this by briefly describing how the long division can be 
reinvented. I will center this description around a paradigmatic problem about the transfer 
of supporters of a soccer club (fig. 4). 
 

 

 
 
 1128 supporters want to visit the away soccer game of Feijenoord. 
The treasurer learns that one bus can carry 38 passengers and that 
a reduction will be given for every ten buses. 
 
Figure 4. Feijenoord 
 

Basically the problem can be solved by repeated subtraction, each time a bus is 
filled with 38 people, you subtract 38 (see fig. 5).  
 
 1296 
     38 - 1 x 
 1258 
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       38 - 1 x 
 1220 
        38 - 1x 
 1182 
       38 - 1 x 
 1244 
        38 - 1x 
 …. 
 

Figure 5. Repeated subtraction 
 
In addition to this, the information in the task, that a reduction will be given for 
every ten buses, may work as a suggestion to calculate the number of times you can 
cash in reductions. Finding out how many times you can fill ten buses, may call the 
students’ attention to the opportunities offered by the decimal system. Even then 
various solutions are possible (fig. 6). 

 
 38/ 1296 \ 34                       38/ 1296 \ 34                38/ 1296 \ 34 
   380 - 10x   380 - 10x   1140 - 30x 
 916   916   156 
   380 - 10x   760 - 20x   152 - 4x 
 536   156   4 
   380 - 10x   76 - 2x  
 156   80    
   38 - 1x   76 - 2x  
 118   4    
   38 - 1x   
 80    
   38 - 1x  
 42    
   38 - 1x   
 4    
 

Figure 6. Various levels of curtailment 
 

Such leads on the way to the written algorithm are opportunities for students to 
make discoveries at their own level, to build on their own experiential knowledge 
and perform short-cuts at their own pace. Working with realistic problems also 
implies a meaningful approach to the problem of the remainder, i.e., as a real life 
phenomenon that calls for practical solutions, rather than as a peculiarity of non-
terminating divisions. If the context is taken seriously, then ‘34 remainder 4’ is not 
an acceptable answer. What can we do with these 4 supporters? Well, there are 
several possibilities, distribute them over the other buses, order an extra bus, or 
speculate on the withdrawal of at least 4 at the last moment. 
 
Emergent Modeling 
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Closely connected to the RME principle of guided reinvention, is that of emergent 
modeling (Gravemeijer, 1999, 2004). With emergent modeling we can, as I said, 
circumvent the learning paradox. Earlier we discussed the learning paradox as one of the 
difficulties that arise within an instructional approach that treats the knowledge of experts 
as an independent body of knowledge, which can be appropriated by students by offering 
them concrete materials that embody that knowledge.  
The emergent modeling approach is in line with Meira’s (1995) proposal to circumvent 
the learning paradox. On the basis of an historical analysis, he suggest a dialectic process 
of symbolizing and meaning making, in which both the symbolizations and the 
corresponding meaning develop. Historically, symbols and models did not materialize out 
of thin air, they are the results of a long processes of inventing, adjusting and refining. So 
again the conclusion is that instead of trying to help students to make connections with 
ready-made mathematics, we should try to help students construe mathematics in a more 
bottom-up manner. This recommendation fits with the idea of emergent modeling. The 
emergent modeling approach takes its point of departure in the activity of modeling. 
Modeling in this conception is an activity of the students, who are asked to solve a 
contextual problem. Then the students model the problem, in order to solve it with help 
of that model. Such a modeling activity might involve making drawings, diagrams, or 
tables, or it could involve developing informal notations or using conventional 
mathematical notations. The conjecture is that acting with these models will help the 
students reinvent the more formal mathematics that is aimed for.  So again, the alternative 
to making connections with a ready-made mathematics, is shaped as an activity of doing 
mathematics, which is put into service of developing mathematics. 
Initially, the models come to the fore as context-specific models. The models refer to 
concrete or paradigmatic situations, which are experientially real for the students. On this 
level the model should allow for informal strategies that correspond with situated solution 
strategies at the level of the situation that is defined in the contextual problem.  
From then on, the role of the model begins to change. Then, while the students gather 
more experience with similar problems, their attention may shift towards the 
mathematical relations and strategies. As a consequence, the model gets a more object-
like character, and becomes more important as a base for mathematical reasoning, than as 
a way of representing a contextual problem. In this manner, the model starts to become a 
referential base for the level of formal mathematics. Or in short: a model of informal 
mathematical activity develops into a model for more formal mathematical reasoning.  
 
Model-of/model-for 
In contrast with the gap metaphor, formal mathematics is not seen as something separate, 
existing independent of a knowing agent. Instead, formal mathematics is seen as 
emerging alongside with the model-of /model-for transition. When speaking of formal 
mathematics, we hasten to say that in RME, formal mathematics is not seen as something 
‘out there’. Instead, formal mathematics is seen as something that grows out of the 
students’ activity. For us, the notion of ‘abstraction’ is tied to a progression from informal 
to more formal mathematical reasoning, which in turn is tied to the creation of new 
mathematical reality. So instead of ‘cutting bonds with (everyday-life) reality’, we want 
to stress ‘construction’. Informal, situated knowledge is the basis upon which more 
formal, abstract mathematical knowledge is build.  
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Our claim is that the emergent-modeling design heuristic helps instructional designers in 
developing topic-specific instruction theories and corresponding instructional activities 
that support learning processes in which students construe new mathematical reality. In 
order to clarify the emergent modeling heuristic, we will briefly describe two exemplary 
instructional sequences. 
 
Addition and subtraction as an example 
This exemplary sequence, which concerns linear measurement and flexible arithmetic, 
was developed in connection with a teaching experiment carried out at Vanderbilt 
University (Stephan, Bowers, Cobb, & Gravemeijer, 2004); Stephan, 1998). The underlying 
idea is that measuring by iterating measurement units can give rise to the construal of a 
ruler and that the ruler can subsequently support arithmetical reasoning about problems 
concerning incrementing, decrementing and comparing measures. 
After a series of preparatory activities, the students start measuring with stacks of ten  
unifix cubes. They first iterate units of ten, then adjust by adding or subtracting ones. In 
this manner, measuring with tens and ones helps the students in structuring the number 
sequence up to 100. Next, the students create their own paper strip that is ten unifix cubes 
long. With that, a basis is being laid for the construction of a measurement strip that 
comprises ten units of ten; each subdivided into ten units of one cube. The idea is that, 
thanks to the learning history, measuring with the measurement strip is grounded in the 
imagery of measuring with units of ten and one. Thus, for the students, measuring with 
the strip signifies iterating a unit of ten cubes and a unit of one cube. Next, a shift is made 
from actually measuring items to reasoning about lengths when solving tasks around 
incrementing, decrementing and comparing lengths of objects that are not physically 
present (i.e. comparing the measures of the heights of sunflowers in the context of a 
sunflower contest). These tasks offer opportunities for developing solution methods 
based on curtailed counting—using the decimal structure as a framework of reference. 
Numbers close to a decuple, for instance, can be identified by using that decuple as a 
referent, e.g. 48 = 40 + 8 = 30 + 18 = 50 – 2. These relations can be exploited when 
analyzing patterns that correspond with jumps of 10.  
In this process the ruler is initially used for measuring, and later as a means of support for 
arithmetical reasoning. For instance, when students are presented with problems such as 
the following: 
 
We have two planks, one of 48 cm and one of 75 cm. 

 How much is the difference? 
 
The students may, of course, use the ruler to count individual units. However, the ruler 
may also be used as a basis for arithmetical reasoning. A self-evident solution would be 
to look at the ruler and reason:  
48+2=50; 50+10=60; 60+10=70; 70+5=75, so the difference is 2+10+10+5=27.  
Another solution might be: 
48+20=68; 68+7=75, so the difference is 27.  
As a next step, such solutions procedures can be modeled with an empty number line 
(fig.7).  
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              2     10          10        5 
 
 

                      48 50         60          70    75 
 
Figure 7.  Counting by jumps on the number line 

 
Mark that the use of the empty number line does not only fit these strategies, but also 
supports them. The number line supports the execution of counting-type methods, by 
offering a way of scaffolding—to keep track of both partial calculations and partial 
results. In this way, students adapt the model to their thinking.  
Later, the empty number line will be used to depict more sophisticated strategies. 
Looking at the numbers in the above problem, a student might think of 75-50=25 as a 
nice familiar number relation. This student might recast the problem in terms of a 
subtraction task: 75-48=…, which could be solved via 75-50=25; 25+2=27. When 
justifying his or her strategy, this student might use the number line to show that ‘minus 
48’ equals ‘minus 50 plus 2’ (see fig. 8). 

 
            +2              - 50 

 
 

                      25 27                              75 
 
Figure 8.  Compensating 
 

We may note that in the latter case, the number line plays a different role than in the 
earlier cases. Now the number line is used to support the student’s reasoning about 
number relations. Earlier the jumps on the number line were used to model the solution 
of a contextual problem. This difference is central to the model-of/model-for shift. Let 
me elaborate this point. Initially, the focus of the students is on the relation between the 
context problem and the number line. Later the numerical/mathematical relations 
become more important. In the first stage, the jumps on number line can be explained in 
terms of the problem situation by (fig. 7). Later on students will start to use the number 
line to support their reasoning about number relations (fig. 8). 
 
In short, the shift from model/of to model/for concurres with a shift from thinking about 
the modeled context situation, to thinking about mathematical relations. In the latter 
phase, number relations give meaning to the use of the number line. In relation to this, 
we can discern two different types of activity:  

(a)  referential activity, in which acting with the model derives its meaning from 
activity in the setting described in instructional activities 

(b)  general activity, in which acting with the model derives its meaning from the 
mathematical relations involved. 

 
These general types of activity can be seen as different levels of activity, which can be 
completed with a level of activity in the task setting itself at the one hand, and a level of 
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more formal mathematical activity where the student no longer needs a model on the 
other hand. Together, we can elaborate the model-of/model-for distinction by identifying 
four general types of activity (Gravemeijer, 1994), as shown in Figure 9. 

 

formal

general

referential

situational

  
Figure 9. Levels 

 
(1)   activity in the task setting, in which interpretations and solutions depend on 

understanding of how to act in the setting  
(2)   referential activity, in which models-of refer to activity in the setting described in 

instructional activities 
(3)   general activity, in which models-for refer to a framework of mathematical 

relations 
(4)   formal mathematical reasoning which is no longer dependent on the  support of 

models-for mathematical activity. 
 
At the referential level, models are grounded in students’ understandings of 
experientially-real settings.  General activity begins to emerge as the students begin to 
focus on the mathematical relations involved. Then their reasoning loses its dependency 
on situation-specific imagery, and the role of models gradually changes as they take on a 
life of their own.  
 
A crucial aspect of the emergent-models heuristic is that the shift from model-of to 
model-for is reflexively related with the creation of some mathematical reality. What is 
expected is, that in the course of the sequence, a shift is taking place in what the numbers 
signify for the students. Initially, numbers refer to distances, later, numbers start to 
signify mathematical objects. This shift involves a transition from viewing numbers as 
tied to identifiable objects or units (i. c. numbers as constituents of magnitudes; ‘48 
centimeter’) to viewing numbers as entities on their own (‘48’). For the student, a number 
viewed as a mathematical object still has quantitative meaning, but this meaning is no 
longer dependent upon its connection with identifiable distances, or with specified 
countable objects. In the student’s experienced world, numbers viewed as mathematical 
objects derive their meaning from their place in a network of number relations. Such a 
network may include relations such as 48 = 40 + 8 = 30 + 18 = 50 – 2. The critical aspect 
of this network is that the students’ understanding of these relations transcends individual 
cases. That is, when students form notions of mathematical objects, they come to view 
relations like the above as holding for any quantity of 48 objects (including a magnitude 
of 48 units).  
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This shift from numbers as referents to numbers as mathematical objects is reflexively 
related to the model of to model for transition described earlier.  On the one hand, the 
students’ actions with ‘the model’ foster the constitution of a framework of number 
relations.  On the other hand, through the students’ development of this framework of 
number relations, ‘the model’ can take its role as a model for mathematical reasoning. 
What is aimed for is, that the students come to experience the framework of mathematical 
relations and the corresponding mathematical objects as some new mathematical reality. 
This experienced reality corresponds with the perceived body of mathematical knowledge 
that we identified as the central problem in the ‘learning as making connections 
approach’. This shows the value of the emergent modeling approach: Instead of trying to 
help students to make connections with a mathematical reality that does not exists for 
them, the emergent modeling approach helps students in constructing such a 
mathematical reality by themselves. 
In conclusion, we may observe that there are three parallel processes, one involves the 
model-of/model-for transition, the second concerns the constitution some mathematical 
objects and a framework of mathematical relations, or some new mathematical reality, 
the third encompass the series of sub-models or tools that are the concrete correlates of 
the model. I will discuss how an orientation on those three processes may help the 
instructional designer by elaborating upon a teaching experiment on data analysis carried 
out by Cobb, Gravemeijer, McClain and Konold in a 7th-grade classroom in Nashville 
(USA). 
 
Data analysis as an example 
Looking at the three processes mentioned above, we may conclude that the instructional 
designer will have to consider the choice of ‘the model’, the new mathematical reality the 
students are to construe, and the series of symbolizations that will instantiate the model in 
the concrete instructional activities. We will start the discussion of the instructional 
sequence that we used in the teaching experiment on data analysis by considering the 
goals of the instructional sequence. We begin by asking ourselves: What constitutes the 
new mathematical reality we want the students to construe, and what are the 
mathematical relations involved? Next, we ask ourselves: What is the overarching model, 
and what do the underlying sub-models consist of?  

 
Our answer to the first question is that, what is to be construed as new mathematical 
reality by the students, may be denoted as ‘distribution-as-an-entity’. We want the 
students to come to view data sets as entities that are distributed within a space of 
possible values rather than a plurality of values (Hancock, Kaput, & Goldsmith, 1992; 
Wilensky, 1997). Another argument for choosing distribution as a central statistical idea 
is that in conventional statistics courses, statistical measures like mean, mode, median, 
spread, quartiles, (relative) frequency, regression, and correlation are taught as a set of 
independent definitions. In contrast, these statistical measures come to the fore as 
characteristics of distributions in the conjectured learning trajectory. Likewise, 
conventional representations like histogram, and box plot come to the fore as means to 
characterize distributions. To clarify what we mean by distribution as a learning goal, we 
may start by observing that for us, distribution is intimately connected with the idea of 
‘shape’. Like when we colloquially speak of the ‘bell shape’ of a normal distribution. 
However, the imagery of a bell-shaped distribution, entails more than a mere figural 
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inscription. In relation to this, we may ask ourselves, what does the curve of figure 10 
represent?  

 

 
 
Fig. 10. Bell curve. 
 

At first sight, the height of a point of the curve seems to signify the number of cases that 
have a measure equal to the corresponding measurement value. However, such a point 
does not have any width, thus we are working with an endless precision. And there will 
probably not be a single case with exactly that measure. Actually, the graph has to be 
viewed as an idealization, or as the limit of a series of (relative frequency) histograms, 
with their interval widths approaching zero. We believe that approaching distribution 
from this angle would be far to demanding for 7th-grade students. However, another way 
to think about such a graph is as a density function. We believe that this offers a way into 
a qualitative understanding of distribution. In this conceptualization, the height of a point 
on the graph does not signify a number of cases, but the density of data points around that 
value. From this perspective, distribution can be thought of in terms of shape and density. 
Shape and density in turn can be seen as means to organize collections of data points in a 
space of possible data values. In relation to this, we may mark that Hancock, Kaput, & 
Goldsmith (1992) found that students tend to see data as attributes of individuals, which 
implies that students will have to reorganize their thinking to be able to see data as 
possible values of a variable. 

 
In summary, we may conclude that important mathematical relations concern: shape, 
density, variable, and data points in a space of possible values. These are the relations 
that will have to constitute the network of mathematical relations that will be 
instrumental in the transition from the level of referential activity to the level of general 
activity. This implies that in order to support this transition, those mathematical relations 
have to become a topic for discussion in the classroom. To this we may add the issue of 
multiplicative reasoning, firstly since that is implied by the notions of shape and density, 
and secondly since it will come to play when comparing data sets of unequal size. 

 
Emergent model and symbolizations 
In answer to the second question, we may describe the overarching model as ‘a graphical 
representation of the shape of a distribution’. Given the tight connection between 
distribution and shape, it seems self-explanatory that the overarching model is tied to 
shape. With ‘a graphical representation of the shape of a distribution’ we, of course, do 
not mean just the figural inscription itself, but also what we hope it will signify for the 
student. The most common graph of the shape of a distribution is the graph of a density 
function we discussed earlier. However, we may also think of histograms, box plots, or 
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stem-and-leaf diagrams. To find the graph to start the sequence with, we have looked for 
a graph that would most closely match an intuitive image of a set of measures. It should 
be a graph that the students could, in principle, invent themselves. In relation to this, the 
notion of a scale line came to mind. Especially measures of a linear type, like ‘length’, 
and ‘time’ are often represented by scale lines. These considerations let to the choice of a  
graph that consists of value bars, which each value bar signifying a single measure (fig. 
11).  
 

Figure 11. Value-bar graph. 
 
Next we looked for a type of graph that might function as a transition stage between the 
magnitude-value-bar graph and the graph of a density function. Here we chose a dot plot 
(fig. 12). 

 
 

Figure 12. Dot plot. 
 
Within a dot plot, the density of the data points in a given region translates itself in the 
way the dots are stacked. Consequently, the height of the stacked dots at a given position 
can be interpreted as a measure for the density at that position. In this sense, the visual 
shape of the dot plot can be seen as a qualitative precursor to the graph of a density 
function. On the other hand, the dot plot can be seen as a more condense form of a 
magnitude-value-bar graph that leaves out the value bars and only keeps the end points. 
 
The aforementioned graphs are embedded in computer (mini)tools that can be used for 
exploratory data analysis on an elementary level. Point of departure, is a bottom-up 
approach in which the minitools are perceived by the students as tools that are compatible 
with their conception of analyzing data, and are experienced as sensible tools in that 
regard. So for the students the primary function of the minitools is to help them structure 
and describe data sets in order to make a decision or judgment. 
The first minitool displays individual data values as value bars as shown in figure 11. 
With this minitool, one can display two or three data sets. The minitool has various 
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options, like sorting and partitioning data, which the students can use to describe and 
compare data sets.  
The second minitool displays individual data values as dots in a dot plot. This minitool 
can display two data sets at a time, and various tool options are available, to help the 
student structure the distribution of data points in a dot plot. These options include: 
making your own groups, making four equal groups, making groups of a certain size, and 
making equal intervals.  
 
To close, I want to take some instructional activities from the Nashville teaching 
experiment to explicate what the model-of /model-for transition entail in this sequence. 
One of the first tasks of the sequence concerns the comparison the life spans of to brands 
of batteries, Though Cell and Always Ready. The students do not actually measure life 
spans, instead the teacher and students talk through the process of data creation. The 
teacher presents the context of writing about batteries in a consumer report. In relation to 
this the teacher and students discuss what important characteristics of batteries are. Then, 
when they have decided on life span as an important characteristic, they discuss how the 
life span of a battery could be measured. And finally the results of such a measurement 
for ten Though Cell batteries and ten Always Ready batteries are presented as value bars 
in the first minitool (fig. 13).  
 

Always Ready

Tough Cell

 
Figure 13. The life span of two brands of batteries. 

 
The students introduced the term ‘consistency’ to argue that they ‘would rather have a 
consistent battery (...) than one that you just have to try to guess’. We may interpret this 
argument as referring to the shape of the distribution, which is visible in the way the 
endpoints of the value bars are distributed in regard to the axis. In relation to this, we can 
speak of a graphical representation of the distribution as a model of a set of measures.  
 
Eventually the students used the four-equal-groups display of the second minitool to 
reason about shape and density (see fig. 14).  
 
 

 
  

Figure 14. Dot plot structured into four equal groups. 
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The distance between two vertical bars that mark a quartile can were interpreted as 
indicating how much the data are ‘bunched up’. Moreover, the median started to function 
as an indicator of ‘where the hill is’. Finally, the students started to treat distributions as 
entities. In this regard, we may describe the four-equal groups display as a graphical 
representation of the distribution that started to function as a model for a model for 
reasoning about distributions. 
 
Conclusion  
In the above I have tried to show the importance of supporting students in constructing, 
or reinventing, mathematics on their own accord. I have argued that teachers need the 
help of local instruction theories to do so. In relation to this I have elaborated one of the 
key instructional design heuristics that may help designers/researchers to develop such 
local instruction theories. The emergent modeling heuristic may guide instructional 
designers/researchers by asking them to 

- think through the endpoints of a given instructional sequence in terms of new 
mathematical reality; to describe what mathematical objects the students are 
expected to construe, and to explicate the corresponding framework of 
mathematical relations 

- think through the model-of/model-for transition, which for instance means, to 
consider what informal situated activity is being modeled, and what a potential 
chain-of-signification might look like.  

In connection with the above, the heuristic suggests points of attention for the enactment 
of the instructional sequence. It highlights that formalizing is not equal to, and cannot be 
forced by, the use of formal notations. Instead formalizing grows out of a shift of 
attention towards mathematical relations. The aforementioned considerations will 
indicate what those relations are, what the mathematical issues are that are to become 
topics of discussion, and what role the various tools/symbolizations may play. In relation 
to the latter, I want to point to the central principle that new (sub-)models are to derive 
their meaning from earlier experiences with earlier (sub-)models.  
All in all we may conclude that local instruction theories can only offer a general 
framework. The teachers will have to respond to the students’ thinking, they have to 
decide, for instance, which mathematical relations students start to grasp, and which are 
still to be worked on. Teachers will also have to judge when a new sub-model might be 
introduced, and check whether that new (sub-)model is experienced as ‘bottom up’, 
which means that it signifies earlier activities with earlier (sub-)models for the students. 
In relation to this, I want to close by suggesting that a combination of design research on 
local instruction theories, and lesson studies that build on those theories might offer a 
powerful combination for improving mathematics education. In this manner, lesson 
studies may contribute to the ecological validity of a local instruction theory, as the 
lesson studies may be considered as follow-up trials with a range of participants in a 
variety of settings. 
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