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Lesson studies

• Teachers design, try out, observe, analyze, 
and improve innovative lessons collectively

• Alternative for top-down innovations 



3

Hypothetical Learning Trajectory

• “constructivist instruction”
• Teachers try to anticipate what mental 

activities the students will engage in when 
they participate in the envisioned 
instructional activities, and consider how 
those mental activities relate to the end 
goals one is aiming for.
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Local Instruction Theories

• If you want to build on the ideas and input 
you have to plan ahead

• You have to create experiences for the 
students on the basis of which they may 
come up with productive ideas

• In this context it is helpful to disgn
instructional tasks that may generate a 
variety of solutions
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Local Instruction Theories

• A theory about a possible learning process, 
and the means of supporting that process

• Local = tailored to a given topic, such as 
addition of fractions, multiplication of 
decimals, or data analysis
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This talk

• Point of departure: necessity of local instruction 
theories for helping teachers in helping students in
constructing, or reinventing, mathematics

• Backbone of local instruction theories: RME 
instructional design heuristics, especially 
‘emergent modeling’

• First: Need for ‘constructing’ versus ‘instruction’
What makes mathematics so difficult?

10

What makes mathematics so 
difficult?



11

A common view on learning

• Common view: Learning by making 
connections between what is known and 
what has to be learned 

Learning Mathematics: making connections 
with an abstract, formal body of knowledge
Designing visual and tactile models to 
bridge the gap 
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Didactical Models

• Didactical models: trying to show the
mathematics 

• But how are the students to see the
mathematics they do not know yet? 
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Didactical Models

1128 Supporters want to visit the away soccer 
game of Feijenoord.
One bus can carry 38 passengers.
> How many busses will be needed?
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Didactical Models

38 / 1  2  9  6 ¥
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Didactical Models

38 / 1  2  9  6 ¥ 3
1  1  4 How many tens? 3 x 38 = 114
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Didactical Models

38 / 1  2  9  6 ¥ 3 4
1  1  4

1  5 6
1  3 2    How many ones? 4x38=132

4
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people       busses

38 / 1  2  9  6 ¥ 3 4
1  1  4

1  5 6
1  3 2

4
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Auburn

Auburn ‘Grade 1’
• 16 + 9   =
• 28 + 13 =
• 37 + 24 =
• 39 + 53 =
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Auburn

Auburn ‘Grade 1’
• 16 + 9   = 25
• 28 + 13 =
• 37 + 24 =
• 39 + 53 =
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Auburn

• Worksheet 
Auburn’s solution:

•
• 16
• 9 +
• 15
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interviewer (I), Auburn (A):

I : Is that correct that there are two answers?
A : ?
I : Which do you think is the best?
A : 25
I : Why?
A : I don’t know.
I : If we had 16 cookies and another 9 added, would 

we have 15 altogether?
A : No.
I : Why not?
A : If you count them altogether you would get 25.
I : But this (15) is sometimes correct? 

Or is it always wrong?
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A : It is always correct.
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A : It is always correct.

Two answers two worlds: school 
mathematics & reality
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Problems with
the common view on learning

• 1: The new mathematical knowledge the
students have to connect with does not yet 
exist for them.

• 2: The learning paradox
– The symbols that one needs to get into the new 

mathematical domain, derive their meaning 
from that very domain.
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The new mathematical 
knowledge does not exist yet: 
Early number as an example

• Young children don´t understand the question: 
“How much is 4+4?
Even though they know that “4 apples and 4 
apples makes 8 apples”

• Ground level: Number tied to countable objects: 
“four apples”

• Higher level:  4 is associated with number 
relations: 

4 = 2+2 = 3+1 = 5-1 = 8:2

26

Miscommunication between 
teacher and students

• Student are thinking at the level of countable 
objects

• Instruction on the level of number relations; 

– Note: Telling students that 2+2=4, etcetera, will 
not help if the students do not know what ‘2+2’
means.
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Gap between teacher and student
knowledge: Different 

frameworks of reference
• Problem identified by the Van Hieles
• Van Hiele (1975): Teachers and students 

have different frameworks of reference 
• It is as if they speak different languages; 
• Or worse: They use the same words but 

with a different meaning
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Van Hiele example: the concept 
‘rhombus’ in geometry

square rhombus
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Van Hiele example : the concept 
‘rhombus’ in geometry

square rhombus

– Sides are two by two parallel
– All sides have equal lengths
– Diagonals intersect orthogonal
– Facing angles are equal
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Consequences of
the common view

• The body of knowledge only exist in the minds of 
teachers and textbook authors; how can students 
connect to a body of knowledge that does not exist 
for them?

• The learning paradox: Mathematical symbols 
derive their meaning from a certain mathematical 
domain. However, you need to understand those 
symbols to enter that domain.
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Consequences of
the common view

• Some people manage to reinvent mathematics 
even if it is not taught that way (but as “Learn first, 
understand later”)

• Most don’t, they learn definitions and algorithms 
by heart 
– Problems with applications 
– Problems with understanding
– Math anxiety
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Alternative: Learning 
mathematics as a process of 

personal growth
• Helping students to expand and build upon their 

own (informal) mathematical knowledge:

• Structuring quantities; 
4 apples = 2 apples + 2 apples 
4 marbles = 2 marbles + 2 marbles 
– Curtail counting; explain & justify

• Investigating geometrical relations (rhombus)
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Freudenthal: 
Mathematics as an activity

• It is an activity of solving problems, of looking 
for problems, but it is also an activity of 
organizing a subject matter. This can be a 
matter from reality which has to be organized 
according to mathematical patterns if problems 
from reality have to be solved. It can also be a 
mathematical matter, new or old results, of 
your own or others, which have to be 
organized according to new ideas, to be better 
understood, in a broader context, or by an 
axiomatic approach.
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Freudenthal: 
Mathematics as an activity

• Freudenthal (1973): mathematics as an activity of 
doing mathematics; most importantly, an activity
of organizing or mathematizing subject matter,
– Subject matter from reality
– Mathematical matter

• Mathematizing: generalizing, formalizing, proving, 
curtailing, defining, axiomatizing

• And this we teach: Anti-didactical inversion
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Realistic Mathematics Education

• Mathematics as an activity
• Students should be given the opportunity to 

reinvent mathematics
• Instructional-design heuristics 

– Guided Reinvention/mathematizing
– Didactical Phenomenology
– Emergent modeling
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Guided Reinvention Through 
Progressive Mathematizing

• A route has to be mapped out that allows 
the students to (re)invent the intended 
mathematics by themselves
– history of mathematics
– informal solution procedures
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Long Division

1128 Supporters want to visit the away soccer game of Feijenoord.
One bus can carry 38 passengers.
A reduction will be given for every ten buses.

38

1296 : 38
1296

38 - 1 x
1258

38 - 1 x
1220

38 - 1x
1182

38 - 1 x
1244

38 - 1x
….

Repeated subtraction
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1296 : 38
38/1296 ¥ 34 38/ 1296 ¥ 34 38/  1296  ¥ 34

380 - 10x 380 - 10x 1140 - 30x
916 916 156
380 - 10x 760 - 20x 152 - 4x
536 156 4
380 - 10x 76 - 2x
156 80
38 - 1x 76 - 2x

118 4
38 - 1x
80
38 - 1x
42
38 - 1x

4 Various levels of curtailment 
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Didactical Phenomenology 

• Phenomenology: 
how mathematical “thought things”, like tools 
or concepts help organize certain phenomena 

• Look for applications & points of impact 
• Goal: To find the phenomena and situations 

that may create the need for the students to 
develop the mathematical concept or tool 
we are aiming for. 
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Didactical phenomenology in 
division

Three students dividing 36 sweets 
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Didactical phenomenology in 
division

Geometric division 
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Didactical phenomenology in 
division

Piece wise distribution
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Didactical phenomenology in 
division

triads
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Two phenomenologically
different forms of division

distribution division ratio division
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Emergent modeling

• Mark that we may discern three types of 
modeling in mathematics education 
– Use of didactical models
– Mathematical modeling
– Emergent modeling
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Mathematical modeling

• Mathematical model and the situation 
modeled are treated as separate entities: 
“goodness of fit”

• Problem solving activity
• Learning process

(Where does the mathematics come from?)
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Emergent Modeling: 
a long-term learning process

From a model of the students' situated informal 
strategies 
Towards a model for more formal mathematical 
reasoning

Key in this process: 
a shift in attention: from context to mathematical 
relations => building a framework of mathematical 
relations
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Emergent modeling: 
Long division

38/1296 ¥ 34
380 - 10x
916 
380 - 10x
536
380 - 10x
156

38 - 1x
118

38 - 1x
80
38 - 1x
42
38 - 1x

4

repeated subtraction as 
a model of transporting
supporters
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Emergent modeling: 
Long division

38 / 1  2  9  6 ¥ 3 4
1  1  4 minus 30 x 38 = 1140

1  5 6
1  3 2 

4
repeated subtraction
as a model for
mathematical reasoning
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Emergent Modeling

situational

Situational level:
Activity in the task 
setting, in which 
interpretations and 
solutions depend on 
understanding of how to 
act in the setting (often 
out of school settings)
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Emergent Modeling

situational

referential

Referential level:
Referential activity, in 
which the model derives 
its meaning from the 
reference to activity in 
the task setting, and 
functions as a model of
that activity.
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Emergent Modeling

situational

General level:
General activity, 
attention shifts towards
mathematicals relations, 
the model starts to 
derive its meaning from 
those mathematical 
relations, and becomes 
a model-for more formal 
mathematical reasoning

referential

general
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Emergent Modeling

situational

Formal level:
Formal mathematical 
reasoning, which is no 
longer dependent on the 
support of models

referential

general

formal
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Emergent Modeling

situational

Formal level:
More formal, in that it 
relates a framework of 
mathematical relations 
that is new to the 
students.
(New mathematical 
reality).

referential

general

formal
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Emergent Modeling

• “The model” as an overarching concept
= a series of consecutive sub models that 
can be seen as various manifestations of the 
same model

• Shift in the role of “the model” on a more 
global level = various models that take on 
different roles
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model of => model for
• initially, models refer to concrete situations, 

which are experientially real for the 
students

• the model gets a more object-like character
• becomes a base for mathematical reasoning

A model of informal mathematical 
activity becomes a model for more formal 
mathematical reasoning
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The Empty Number Line

• Example local instruction theory (developed
at Vanderbilt University)

• Local instruction theory on flexible 
strategies for addition and subtraction up to 
100 
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The Empty Number Line
• instructional sequence on flexible strategies 

for addition and subtraction up to 100 
• informal solution procedures of students

– splitting tens and ones
• 44 + 37 = …

40 + 30 = 70; 4 + 7 = 11; 70 + 11 = 81

– counting in jumps
• 44 + 37 = …; 44 + 30 = 74; 74 + 7 = 81, 
or:
• 44 + 37 = …; 44 + 6 = 50; 50 + 10 = 60; 

60 + 10 = 70; 70 + 10 = 80; 80 + 1 = 81
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Linear-type problems: 
Comparing lengths

difference between 48 and 75 cm

*Reasoning
48+2=50
50+10=60
60+10=70
70+5=75 difference: 2+10+10+5=27
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Empty number line

48  

62

Empty number line

48   50 

2   
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Empty number line

48   50          60   

2        10     
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Empty number line

48   50          60           70  

2        10         10       
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Empty number line

48   50          60           70   75

48+…=75

2        10         10          5            = 27
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75 - 48

75
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75 - 48

25                                          75

- 50

68

75 - 48

25  27                                    75

+2              - 50
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Empty number line

• Initially, the focus is on the relation between the 
context problem and the number line.

• Later the numerical/mathematical relations 
become more important

25  27                              75

+2              - 50

48  50       60        70  75

2     10         10      5
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Emergent Modeling

situational

Situational level:
Measuring context
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Emergent Modeling

situational

referential

Referential level:
Describing strategies for 
reasoning in the 
measuring context with 
jumps on the number 
line
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Emergent Modeling

situational

General level:
Describing strategies for 
reasoning with number 
relations with jumps on 
the number line

referential

general
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Emergent Modeling

situational

Formal level:
Reasoning within a 
framework of number 
relations without the 
support of the number 
line referential

general

formal
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Emergent Modeling

situational

Formal level:
Students have created a 
framework of 
mathematical relations 
that is new to the 
students. referential

general

formal
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The shift from model-of to model-for 
is reflexively related with the creation 

of mathematical reality
The student’s view of numbers transitions from 
• numbers as referents of distances to 

• “37 feet”

• numbers as mathematical objects 
• “37”

network of number relations:
37=30+7
37=3x10+7
37=20+17
37=40-3
etc. 
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RME as an Alternative

• Guided reinvention as a means for designing a
learning route along which students can construct
mathematics

• Didactical phenomenology as a means for finding 
potential starting points

• Emergent modelling as a means of circumventing
the learning paradox by a dialectic process of
symbolizing and development of meaning
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Emergent Modeling
Starting points for instructional design

• What constitutes the new mathematical 
reality we want the students to construe?

What are the mathematical relations 
involved?

• What is the overarching model, and what do 
the underlying sub-models consist of?
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Interlude 

• We pace 100 men in a row from small to 
tall. What will this row look like?
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80
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Bell curve

What does a point on the curve represent?
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Bell curve

What does a point on the curve represent?
Height 178.23682 meter?
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Learning Paradox

The picture of a bell curve does not tell 
you what a normal distribution is.     
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limit histogram
Δ→ 0
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Local Instruction Theory on Data 
Analysis (Vanderbilt University)

• Traditional goals of a beginners course in statistics 
(grade 7 & 8): Mean, mode, median, spread, 
quartiles, histogram, …. 

• What constitutes the new mathematical reality we 
want the students to construe? What are the 
mathematical relations involved?

Distribution as an object; density, shape,
skewness, spread, …
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Distribution as an object

a) All Dutch, c) Families with parents <30
b) All married Dutch d) Dutch adult men
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Distribution as an object

• Area probability/density distribution
• Graph of a density function

• height = density of data points around that value

• Distribution can be thought of in terms of shape and 
density

• Spread
• Skewness
• Position 
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Design Heuristics in the context 
of data analysis

• Guided reinvention
• Didactical phenomenology
• Emergent models
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Guided reinvention

• Reinventing distribution as an object
• Reinventing tools & measures (median, 

quartiles etc.)
• means for getting a handle on a distribution  => 

characteristics of a distribution
• Starting points experientially real

• Data creation ( reason)
• Informal graphical representations
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Didactical phenomenology 

• Starting points: problem situations that may 
give rise to situation-specific solution 
procedures

• Phenomenological analysis: how the 
mathematical “thought thing” (nooumenon) 
organizes the phenomena



91

Phenomenological analysis

• Thought thing distribution
• “shape”

• density function = tool to organize density
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Phenomenological analysis

• Thought thing density = tool to get a handle 
on how data points are distributed in a space 
of possible outcomes
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Phenomenological analysis

• Thought things data points in a space of possible 
outcomes = tools to organize a set of measurement 
values

• 48
• 52
• 61
• 54
• 59
• 53
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Didactical phenomenology
Designing an instructional sequence

Solving applied problems, which gives rise to
mathematizing or organizing:

1. Organizing measurement values data 
points on an axis

2. Organizing the distribution in of data points 
density

3. Organizing density density function
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Emergent Modeling

• Didactical Phenomenology informs 
Emergent Modeling:

Series of submodels

96
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Emergent modeling

• The model: A graphical representation of the 
shape of a distribution
• pre-stage of the model, where the distribution is still 

very much tied to the situation
• Model of a set of measures 

• lifespan of batteries
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Emergent modeling

• Potential endpoint: Box plot as a model for 
reasoning about a distribution

• skewed to the left
• density
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Instructional Activities

• Comparing data sets (samples/badges of 
data) for a reason

• Question or a problem => Data creation
• Talking through the process of data creation
• “realistic” data sets & questions tailored at 

significant statistical issues
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Classroom episodes
Battery life span
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Batteries; life span
“consistency” versus “total”

• The life span of two brands of batteries
“I would rather have a consistent battery (…) than 
one that you just have to try to guess”
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Speed trap

Data of the speeds of cars before and after. 
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Speed trap: “the hill shifted”

“If you look at the graphs and look at them like hills, then 
for the before group the speeds are spread out and more 
than 55, and if you look at the after graph, then more 
people are bunched up close to the speed limit which 
means that the majority of the people slowed down close to 
the speed limit.”
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Directions for Instructional
Design

• Think through the endpoints of a given 
instructional sequence in terms of what 
mathematical objects, and the corresponding 
framework of mathematical relations

• Think through the model-of/model-for transition, 
consider what informal situated activity is being 
modeled, and what a potential chain-of-
signification might look like. 
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Emergent Modeling Informs 
Teachers

• Emergent modeling explicates what 
mathematical relations to aim for. 

• Emergent modeling clarifies what the 
mathematical issues are that are to become 
topics of discussion
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Emergent Modeling Informs 
Teachers

• Emergent modeling informs teachers about 
the series of sub-models and about the 
process in which symbols/models and 
meaning co-evolve.
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Central role of the teacher

• The teachers will have to respond to the 
students’ thinking, they have to decide, for 
instance, which mathematical relations 
students start to grasp, and which are still to 
be worked on.
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Central role of the teacher

• Teachers will also have to judge when a 
new sub-model might be introduced, and 
check whether that new (sub-)model is 
experienced as ‘bottom up’, which means 
that it signifies earlier activities with earlier 
(sub-)models for the students. 
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Iterative processes of design and
improvement

Design Research, Local Instruction Theories, 
&Lesson Studies 

• A combination of design research on local 
instruction theories, and lesson studies that 
build on, and feedback into, those theories 
might offer a powerful combination for 
improving mathematics education. 
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Thank You


