Mathematical Thinking through investigation in multiplication For Primary Teacher Education programme in Hong Kong

CHENG Chun Chor-Litwin The Hong Kong Institute of Education

Introduction

Multiplication is an important component in primary mathematics learning. However, most teachers taught according to the textbooks and there is little room for investigation in this topic. The set of materials introduced her wish to complement mathematical thinking for primary schools students.

In Hong Kong, primary school teachers can go to Institutions to do an in-service release course, ranging from 5-week to a year, to refresh their teaching. This 5-week course may have different focus, such as small class teaching, children with special needs.

The following is the list of material that was used in the teachers' course, so that teachers can try them in their classroom. The materials have been tried out in schools before they are introduced to primary teachers. In total, there are 5 topics of materials introduced in this programme.

- Topic A: Finishing the multiplication table
- Topic B: Filling in numbers represented by English Letters
- Topic C: Finding maximum / minimum product of multiplication
- Topic D: Using factor and common factor
- **Topic E: Finding Equal product**

Topic A: Finishing the multiplication table

Filling in table, with no specific requirement. For example, fill in the boxes for the following question so that multiplication established.

	There are many answers to this question, and children
	are asked to find out answer and also the number of
$\begin{array}{c c} x & \Box \\ \hline 2 & 6 & 4 \end{array}$	answers. Children can use trail and error to solve the
	problem with a calculator. Also, children can use their
	knowledge of divisibility to shorten their calculation.

Apart from the working, a set of problems with progressive requirement of numbers are set so that children may be able to obtain the structure of mathematics. Answers to the above questions may not be easy to establish, so the following easier question are set.

Question :	
fill in integers so that the calculation is	сс × П
correct.	

Students at different ability can get their answer. There are 16 possible answers (answer in appendix A).

Using the numbers $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ once \times C \times 4	
to fill in the boxes so that D E 5 2	
multiplication established.	
$\Box \Box \qquad \qquad \text{First, C could not be 1 or 5.}$	
\times \Box Similarly, B could not be 1 or 5.	
Hence 5 could be A or D.	
Finally $D = 5$, and $A = 1$.	
Trial and error give $13 \times 4 = 52$ °	

Question :	Answer:
Using the numbers $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$ once	
to fill in the boxes so that	5 1
multiplication established.	3 4
	<u> </u>
×□	1 6 2

There are two strategy used by students:

By using trial and error and obtain $53 \times 2 = 106$. This is a close answer and a few tries gives $54 \times 3 = 162$.

The second one is by using logical deduction

The number 1 or 5 could not be placed on the unit digit (marked by a cross \times), since it will gives an answer 5 or 0, and the number 1 will give a same answer. After some trial, they get the same answer.

Also, posing question helps to learn the structure of mathematics. The following questions are posted by students and solved by their classmates.

Posing Question :	Answer:
Using the numbers $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7$ once	
to fill in the boxes so that	
multiplication established.	
	5 7 5 2
x 🗆	<u>× 6 × 7</u>
	3 4 2 3 6 4

Topic B: Filling in numbers represented by English Letters

The next topic is similar to the topic A, except that students need to reason with the digits which are written in letters.

Logical deduction for multiplication

Answer:
2 0 8 2 1 8
<u>× 4 × 4</u>
8 3 2 8 7 2

The process of reasoning are discussed during classes. The following is the sequence of discussion.

As \overline{ABC} multiply by 4, the unit digit A of \overline{CDA} must be one of 4, 8, 2, 6, 0. The digit A could not be 0 or 1. A could only be 2 (otherwise the product is 4 digits)

2 B (C 4	$\overline{CD2}$ is a multiple of 4, $\overline{D2}$ must be a multiple of 4.
CD	<u>+</u> 2	Hence D could be 3 or 7.

Suppose D = 3, then $C \neq 3$, C = 8.

	2	В	С		2	В	8			2	0	8
×			4	×			4	_	×			4
	С	3	2		8	3	2	_		8	3	2

Suppose D = 7, then C = 8, B = 1.

	2	В	С		2	В	8		2	1	8
×			4	×			4	×			4
	С	7	2		8	7	2		8	7	2

After that more questions are posed. More materials is attached in appendix B.

Question :	Answer:
Fill in suitable integers	
A B C D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\rightarrow \rightarrow \rightarrow D C B A	8 7 1 2

Process of thinking :

ABCD	2 B C D	2 B C 8	
× 4	× 4	× 4	
D C B A	D C B 2	8 C B 2	
A = 1 or $A = 2$, but $A = 2$	\neq 1, and A = 2.		
D = 3 or $D = 8$, but D	≠3.		
$C=2$, 7. $B=1$ \circ			

Topic C: Finding maximum / minimum product of multiplication

Students can use calculator to find out the answers for the following questions. It is meant for them to discover the structure of multiplication and sought the pattern for the questions.

Question : Using 1, 2, 3, 4 to fill in the boxes to make the greatest product □□×□□. The answer is not difficult, 41×32

The process is extended to the following questions.

Question 1 :	Question 2 :	Question 3 :
Using 1 , 2 , 3 , 4 , 5 , 6 ,	Using 1 , 2 , 3 , 4 , 5 , 6 ,	Using 1, 2, 3, 4, 5, 6,
7 to form the greatest	7 to form the greatest	7 to form the greatest
product.	product.	product.
x 🗆	x 🗆 🗆	x 🗆 🗆 🗆
Answer:	Answer:	Answer:
654321×7 °	75321×64 °	7531×642 °

Students may not be able to work out the solutions and they are encouraged to identify the greatest product and verified with a calculator.

Lear	rnir	ng A	ctiv	vities	:															
Try	to i	den	tify	the g	grea	tes	st pr	odu	ict f	rom t	he fol	low	ing	s.						
	6	4	2	1			7	3	2	1		7	5	3	1		6	5	3	1
×		7	5	3		×		6	5	4	×		6	4	2	×		7	4	2

Answer :

	6421		7321		7531		6531
×	753	×	654	×	642	×	742
	4835013	4	787934	4 8	34902	4	846002

These questions are extended to more complicated situations for class discussion. More

materials are attached in Appendix C.

Another type of finding greatest product is shown in the following examples.

Question :

From a set of 4 numbers, select 3 number to form a sum and multiply this sum with the fourth numbers, so that the product is greatest \circ

For example, the 4 numbers are $2 \cdot 3 \cdot 5 \cdot 7$.

The following is a list of possibilities.

 $2 \times (3 + 5 + 7) = 30 ,$ $3 \times (2 + 5 + 7) = 42 ,$ $5 \times (2 + 3 + 7) = 60 ,$ $7 \times (2 + 3 + 5) = 70 ,$

And the greatest product is 70, having the three smaller numbers add together and multiple with the largest number.

Topic D: Using factor and common factor

The following material required students to use their knowledge on factors and common factors to solve some problem. It is conducted in two steps. Step (1), doing multiplication, Step (2), reverse the thinking, given the product and find the numbers.

Q	Question				А	er	
8	15				8	15	120
18	12				18	12	216
					144	180	
					3×7		•

Question (Step 1): Write down the product of the numbers.

For the following table, fill in numbers so that the product equal to the number of the grids

For example,	「A×]

Question									
А	В	35							
С	D	12							
21	20								

E	B = 3	5」,	$^{\sqcap}C \times I$	D = 1	2」,	ΓA	×C =	$=21$, $^{\sqcap}B \times D = 20$.
ti	on				Α	nsw	er	
	35				7	5	35	5×7
	12				3	4	12	2×6, 3×4
)					21	20		
					3×7			

Another Example:

Question		L					Answer			
15		3	1	5	15	3	1	5	15	

			108		2	9	108		6	2	9	108
			224		4	7	224		8	4	7	224
144	8	315		144	8	315		-	144	8	315	

Another kind of material also builds on using factors and common factors.

Starting activities : From a set of 4 numbers, select 3 numbers to form a sum and multiply this sum with the fourth numbers. For example, the 4 numbers are $3 \times 5 \times 7$.

The following is a list of possibilities.

 $3 \times (5 + 7) = 36,$ $5 \times (3 + 7) = 50,$ $7 \times (3 + 5) = 56,$

The above is a preparation for the following "reverse questions".

```
Reverse Question :

There are 4 numbers a \cdot b \cdot c \cdot d (2 to 9).

If

a \times (b + c + d) = 69

b \times (a + c + d) = 105

c \times (a + b + d) = 133

d \times (a + b + c) = 165 \circ

Find the values of a \cdot b \cdot c \cdot d.
```

Listing the number with their factors:

 $69 = 3 \times 23$ $105 = 5 \times 21 = 7 \times 15$ $133 = 7 \times 19$ $165 = 11 \times 15$ We can decide that a < b < c < d. and judging by the expression, the answer are 3 \cdot 5 \cdot 7 \cdot 11.

Topic E: Finding Equal product

This set of material can be used for fun and also for finding the structure of indices. The logic of the work is explained to class.

Question 1 :	Question 2 :
--------------	--------------

The following is the answer to the question. The product is 48.

Though student form the product by trial and error, the question is analyed so that the knowledge can be transferred to a new situation.

Suppose the product on each side is T.

Then $(A \times Y \times B) \times (B \times C) \times (A \times X \times C) = T \times T \times T$

 $\Rightarrow A \times B \times C \times X \times Y \times A \times B \times C := T \times T \times T$

- $\Rightarrow (2 \times 3 \times 4 \times 6 \times 8) \times A \times B \times C = T \times T \times T$
- $\Rightarrow (2^7 \times 3^2) \times A \times B \times C = T \times T \times T$

Hence, the least value of A×B×C is $2^2 \times 3^1$ and T×T×T = $2^9 \times 3^3$ That is, the least value of T= $2^3 \times 3^1 = 24 \circ$ As T= 24 \Rightarrow B×C = 24, which is not possible. The next possible value of T= $2^4 \times 3^1 = 48 \Rightarrow$ B×C = 48 \circ Hence, B and C are 6 and 8. The rest is not difficult.

A set of material is attached in appendix E.

Summary

A trail teaching is included for the topic B, filling in numbers represented by English Letters.

Students are encouraged to trial out the answer and pose their question. It is found that students can abstract their thinking and work on these tasks which do not have physical context.

The programme have been introduced for some years and the result are positive. Not only that students understand multiplication more deeply, their interest in mathematics also grows stronger.

Appendix A Materials used in multiplication tables

Question: fill in integers so that the calculation is correct.

Answer:

		8	9				7	9				6	9			5	9
×			3		×			3	_	×			3	×			3
	2	6	7			2	3	7			2	0	7		1	7	7
		4	9				3	9				2	1			3	1
×			3		×			3	_	×			7	×			7
	1	4	7	-		1	1	7	-		1	4	7		2	1	7
×		2	1		×		3	1		Ň		4	1	¥		5	1
	1	4	7			2	1	7	-	<u>~</u>	2	0	7	<u>~</u>	2	5	7
×	1	4	/ 1 7		×	Z	1 7	/ 1 7		×	2	8	7 1 7	×	3	9	/ 1 7
	4	2	7			4	9	7			5	6	7		6	3	7

Question: Fill in 5 different integers so that the calculation works.

Question				I	Answer				
	4	3	3	4	3	8		3	9
× 🗆	×	2	×	2	×	2	×		2
	8	6	6	8	7	6		7	8

Answer :
9 4 8 4
<u>× 7 × 9</u>
658 756
-

Using the technique of division

Question:	There are many answers.
Fill in suitable integers	$3456 \div 2 = 1728$
	$3456 \div 3 = 1152$
×	$3456 \div 4 = 864$
3 4 5 6	$3456 \div 6 = 576$
	$3456 \div 8 = 432$
	$3456 \div 9 = 384$

Question :	Answer:
Fill in suitable integers	
	4 6 9 3 3 5
×	× 5 × 7
2 3 4 5	2 3 4 5 2 3 4 5

			Que	estio	n											Ar	ISW	er				
			Α	В	С									1	2	5			1	7	5	
		×			С								×			5		х			5	
			D	В	С	_								6	2	5			8	7	5	
	0.00	otio	2							Ang												
,	Que	stioi	D					2	5	Alls	wei			C	6							
~		A	D			~		3	5			~		L	6							
×	1	C	D	-		×	1	7	5	•		X	1	5	6							
	1	C	D				1	/	3				1	3	0							
(Que	stio	n							Ans	wer											
		А	В					9	7					4	2							
×			8			×			8			×			8							
	С	С	6	_			7	7	6		-		3	3	6							
(stio					And	wor														
(Que	stion	1 P				Ans	wer														
(Que	stior A	n B 2				Ans	wer 6	8													
(×	Que	stion A D	n B 2 A		-	×	Ans	wer 6	8 2 6													
(×	Que:	stior A D	n B 2 A		-	×	Ans	wer 6 3	8 2 6													
(×	Que:	stior A D	n B 2 A			×	Ans	wer 6 3	8 2 6													
(×	Que: C Qu	stion A D	B 2 A			×	Ans	wer 6 3	8 2 6	/er												
(×	Ques C Qu A	stion A D uesti B	B 2 A	4		×	Ans	wer 6 3 A 1	8 2 6 nsw 7	ver 2	4											
(× ×	Ques C Qu A	stion A D uesti B	B 2 A	43		×	Ans 1	wer 6 3 A 1	8 2 6 nsw 7	ver 2	43											
× ×	Ques C Qu A 5	stion A D uesti B A	B 2 A aon C B	4 3 C	- -	×	Ans	wer 6 3 A 1 5	8 2 6 nsw 7 1	ver 2 7	4 3 2											
(× ×	Ques C Ques C Ques S	stion A D uesti B A	B A A B	4 3 C		×	Ans 1	wer 6 3 A 1 5	8 2 6 nsw 7 1	ver 2 7	4 3 2											
(× ×	Ques C Qu A 5	stion A D uesti B A	B 2 A Con C B	4 3 C		×	Ans 1	wer 6 3 1 5	8 2 6 nsw 7 1	/er 2 7	4 3 2											
(× ×	Ques C Ques C Ques S	stion A D uesti B A Quest	B 2 A A C B	4 3 C	-	×	Ans 1	wer 6 3 A 1 5	$\frac{8}{2}$ nsw 7 1 2	ver 2 7 Ans	4 3 2	7	Q									
(× ×	Ques C Ques A S	stion A D uesti B A Quea B	n B 2 A C C B stior C	4 3 C D	E d	×	Ans 1	wer 6 3 A 1 5	8 2 6 nsw 7 1 2	ver 2 7 Ans 1	4 3 2 5 wei 9	r 7	8 <i>A</i>									

Appendix B Materials used in deduction thinking in multiplication

Question :	Question :
Using 1 , 2 , 3 , 4 to form the greatest	Using 1 · 2 · 3 · 4 · 5 to form the greatest
product.	product.
× 🗆 × 4	
2 5 2	× 🗆 × 5
	1260

Appendix C Materials used in finding maximum / minimum product of multiplication

Using trial and error, students got the following product and they figure out the pattern for obtaining greatest product.

	3	2		4	1			2	1		5	1
		1			2				3			2
		4			3				4			3
×		5	×		5		×		5	×		4
	64	0		123	30	_		120	50		12	24

It seems that $21 \times 3 \times 4 \times 5 = 1260$ has the greatest product. Such thinking is deduced to the following question.

Quest	ion :											
Using	g 1, 2, 3	3, 4, 5	5,6 to fill i	in the	boxe	s to n	hake the	e great	est pro	duct		
	:00×[].									
	2	•			<i>.</i>				0			
	3	2			6	I			3	I		
	4	1			5	2			4	2		
		5				3				5		
×		6	_	×		4		×		6		
	393	60			380	64			390	60		

Appendix D Materials used in multiplication (factors and common factors)

```
Reverse Question :

There are 3 numbers a \cdot b \cdot c (2 to 9).

If

a \times (b + c) = 56,

b \times (a + c) = 72

c \times (a + b) = 80

Find the values of a \cdot b \cdot c.
```

Finding the factors

 $56 = 2 \times 28 = 4 \times 16 = 8 \times 7$ $72 = 2 \times 36 = 3 \times 24 = 4 \times 18 = 6 \times 12 = 8 \times 9$ $80 = 2 \times 40 = 4 \times 20 = 5 \times 16 = 8 \times 10$ Answer a < b < c and a = 4, b = 6, c = 8 °

Generalise:

Two numbers are selected from 4 numbers $a \cdot b \cdot c \cdot d$ (2 to 9) and added.

The sum will multiply the reminding two numbers so that the product is greatest.

Suppose the four numbers are $2 \cdot 3 \cdot 5 \cdot 7 \circ 2 \times 3 \times (5+7) = 72$ $2 \times 5 \times (3+7) = 100$ $2 \times 7 \times (3+5) = 112$ $3 \times 5 \times (2+7) = 135$ $3 \times 7 \times (2+5) = 147$ $5 \times 7 \times (2+3) = 175 \circ$

The greatest answer is selection of the two largest number and multiply together with the um of the reminding two.

Question1:	Question2:
Select numbers from 1 to 10 and fill in	Using numbers $1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 8$ and fill
the circles, so that the product on each	in the circles, so that the product on
side are equal.	each side are equal.

Appendix E Materials used in multiplication (finding equal products)

Answer to the questions

Question1:	Answer:
Using numbers 1, 2, 3, 4, 6, 8, 9 and	
fill in the circles, so that the product on	
each side are equal.	\frown
	$\begin{array}{c} 3 \\ 4 \\ -2 \\ -9 \\ 6 \\ 8 \end{array}$