Computational Thinking in Junior High School

Soledad A. Ulep University of the Philippines National Institute for Science and Mathematics Education Development

Some Background Information

 Computer applications in Technology Livelihood Education in the curriculum

Robotics Club in a regional science high schools

Possible integration of Computational Thinking in the Mathematics Curriculum

"Computational thinking is the thought processes involved in formulating a problem and expressing its solution(s) in such a way that a computer – human or machine – can effectively carry it out." (Jeannette Wing, computer scientist)

The goal of the K to 12 Mathematics Curriculum is the development of learners' problem solving and critical thinking skills.

Elements of Computational Thinking*

- Computational thinking concepts include:
 - logic and logical thinking
 - algorithms and algorithmic thinking
 - patterns and pattern recognition
 - abstraction and generalization
 - evaluation and automation

*Computational Thinking: A Competency whose Time has Come by Shuchi Grover and Roy Pea, 2017.

Elements of Computational Thinking

- Computational thinking practices include:
 - problem decomposition
 - creating computational artifacts
 - testing and debugging
 - iterative refinement (incremental development)
 - evaluation and automation
 - collaboration and creativity

*Computational Thinking: A Competency whose Time has Come by Shuchi Grover and Roy Pea, 2017.

Examples: Computational Thinking Concepts

• Logic and logical thinking : use of if, and, or

• Algorithms and algorithmic thinking: flowcharting

• Pattern and pattern recognition: determining patterns in statistical data

Examples: Computational Thinking Concepts

- Abstraction and generalization: algebraic equations
- Evaluation: correctness and appropriateness of solution, satisfying the constraints/conditions, efficiency
- Automation: determining which part of the solution is better solved by machines

Examples: Computational Thinking Practices

- Problem decomposition: solving a multi-step problem
- Creating computational artifacts: simulation
- Testing and debugging: evaluating if solution works
- Incremental development (iterative refinement): frequent testing and debugging
- Collaboration and creativity: thinking out of the box and finding alternative solutions to problems

"Programming is especially useful platform for teaching computational thinking since it brings together several of the elements – concepts and practices that are central to CT."

Thank you.